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ABSTRACT 

On-road concentrations of traffic-related pollutants are typically much higher than 
concentrations measured at ambient monitoring stations. This results in in-vehicle 
microenvironments contributing disproportionately to the total exposure with exposures 
frequently being as high as on-road concentrations. However, under conditions of low air 
exchange rate, pollutants with significant in-vehicle losses, such as particles, can have in-
vehicle concentrations that are significantly lower than those outside the vehicle. We tested a 
large sample of vehicles selected to be representative of the California fleet for air exchange 
rate (AER) at various speeds and found that AER is a predictable function of vehicle age or 
mileage, speed, and ventilation setting choice (outside air, recirculation, or open windows). 
We demonstrated that AER is the dominant factor in determining the inside-to-outside ratio 
for pollutants like ultrafine particles. Models were developed that explain over 79% of the 
variability in AER and ultrafine particle indoor/outdoor ratios across the California fleet and 
across the expected range of normal driving conditions. To better determine on-road 
concentrations, we also conducted extensive on-road measurements using a mobile platform 
hybrid vehicle with real-time instrumentation. Models were developed and validated to 
estimate on-road traffic-related pollutant concentrations (variance explained was 37% to 73% 
depending on the air pollutant and modeling method).  Models developed in this study can be 
combined with subject information about their vehicle, ventilation choices, and commute route 
to estimate in-vehicle exposures in future studies. 
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EXECUTIVE SUMMARY 

 

Background:  In-vehicle exposures to vehicle-related pollutants can be up to a magnitude 
higher than ambient levels for traffic-related pollutants such as ultrafine particles (UFP) and 
black carbon. Such exposures have been estimated to contribute as much as half of the total 
daily exposure to ultrafine particles, for example, by nonsmoking Los Angeles urbanites for 
open window driving conditions. However, under some conditions of low air exchange rate 
(e.g., low speed, newer vehicles, and recirculating air setting) in-vehicle particle losses are 
significant and in-vehicle concentrations can be significantly reduced. To assess differences 
in in-vehicle exposure in a systematic way, we measured in-cabin concentrations of key air 
pollutants in the Los Angeles air basin and modeled the factors determining their variability.  
We then applied the results of this work to develop models for use in estimating in-transit 
exposures of subjects in epidemiological studies.   
Methods:  We conducted the following five tasks: 
Task 1. a) Examine the primary differences between vehicles for in-cabin pollutant 
concentrations by vehicle type and age during realistic driving conditions in southern 
California, and conduct a comprehensive evaluation of air exchange rate (AER); and 
b) (from Phase I of the proposal revisions, page 6). Test a large, representative sample of 
vehicle AERs at various fixed speeds and ventilation conditions. 
Task 2). Examine the impact of important influential factors that contribute to in-cabin 
pollutant concentrations. Factors included roadway type (freeway, major arterial, and minor 
surface streets), total traffic counts diesel truck counts, mixing height, temperature, relative 
humidity, AC use, season (summer, winter), day of week, time of day (morning rush hours, 
noon, afternoon rush hours, night).  
Task 3). Estimate emission factors of pollutants based on roadway and urban background 
site measurements and CO2-based dilution adjustments. 
Task 4). Develop and validate in-vehicle exposure models for selected pollutants measured 
in this study using data collected from Tasks 1-3.  
Task 5). Validate the in-vehicle exposure model from Task 4 for PAH against measurements 
in representative subjects under realistic driving conditions.   
Results:  Task 1: We developed a simplified yet accurate method for determining AER using 
the occupants’ own production of CO2. By measuring initial CO2 build-up rates and 
equilibrium values of CO2 at fixed speeds, AER was calculated for 59 vehicles representative 
of California’s fleet. Multivariate models captured 70% of the variability in observed AER 
using only age, mileage, manufacturer and speed. AER increases strongly with increasing 
vehicle age and mileage, speed, and is very high (up to a magnitude higher) if windows are 
open or outside air ventilation settings are chosen. High AER (75-150 h-1) results in in-vehicle 
concentrations equaling on-road concentrations. Low AER (< 35 h-1) tends to significantly 
reduce particle mass and number concentrations.    

Task 2: We focused on ultrafine particle (UFP) number concentrations, the particle 
pollutant with the highest and most widely-varying loss rates. Six vehicles were tested at 
different driving speeds, fan settings, cabin filter loadings, and ventilation conditions (outside 
air or recirculation). During outside air conditions, the inside-to-outside ratios averaged 0.67 ± 
0.10 (SD). I/O ratios under outside air intake ventilation mode did not vary with vehicle speed 
but decreased at the higher ventilation flow rates of higher fan settings. During recirculation 
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conditions, AER was much lower and resulted in lower I/O ratios. Ratios averaged 0.17 ± 
0.13 and were highly positively correlated with AER. Under both ventilation condition types, 
particle removal was primarily due to losses unrelated to filtration. Filter condition, or even the 
presence of a filter, played a minor role in particle fraction removed.   

Extensive on-road measurements were made on two arterial and three freeway routes. 
Measurements of real-time black carbon, UFP, PM2.5, NO, NO2, CO, CO2, and particle-bound 
PAHs were made, with GPS and video to capture time, location, and surrounding traffic 
conditions. Analyses below combined these data into freeway and arterial roadway 
concentration models. 

Task 3: Using data from Task Two, fuel-based emission factors (EF) were calculated 
based on simultaneous pollutant and CO2 measurements.  EFs for light-duty vehicles (LDV) 
were generally in agreement with the most recent studies but lower for heavy-duty vehicles 
(HDV), and significantly lower only for oxides of nitrogen (NOx). Annually on I-710, a major 
truck route, the 6.5% fraction of total vehicle miles travelled (VMT) associated with HDV, was 
estimated to contribute 69% to total NOx emissions.  

Task 4: We developed models for predicting in-cabin UFP concentrations if roadway 
concentrations are known, taking into account vehicle characteristics, ventilation settings, 
driving conditions and air exchange rates (AER). Particle concentrations and AER were 
measured in 43 and 73 vehicles, respectively, under various ventilation settings and driving 
speeds.  AER was the most significant determinant of UFP indoor/outdoor ratios, and most 
strongly influenced by ventilation setting (recirculation or outside air intake). Additional 
inclusion of ventilation fan speed, vehicle age or mileage, and driving speed explained 
greater than 79 % of the variability in measured UFP indoor/outdoor ratios.  

We also developed and validated predictive models for on-road concentrations of PAH, 
UFP, PM2.5, NOX and BC that can be combined with information from above tasks to evaluate 
exposure to in-vehicle pollutants among study subjects. The on-road measured data were 
compiled with traffic variables, meteorological factors and time of day to develop regression 
models and non-linear generalized additive. We found that time of day was significant, 
accounting for 5.2%-30.3% of variance explained. Traffic variables, roadway type, and 
number of lanes were significant for traffic-derived pollutants but not PM2.5. Final prediction 
models showed the variance explained ranged from 37% to 73% depending on the pollutant 
and modeling method (linear or nonlinear). 

Task 5: Using personal in-vehicle PAH exposure for 25 subjects participating in another 
study (NIH, NIEHS R21 ES016379, Wu) we examined the predictive ability of model 
variables also tested in other tasks. Although many predictors from Task 4 were significant 
and in the direction anticipated, the overall predictive power of models was lower compared 
to the models from the technician-administered testing for Tasks 1-4.   
Conclusions:  We conclude that models developed in this study will enable us to directly 
study the relationship between in-vehicle air pollutant exposures and the health of the people 
of California.  The findings of this study will have direct application to health effect studies or 
epidemiological studies, to the CARB’ Vulnerable Populations Research Program, and 
eventually to evaluations of air quality standards for PM and gas pollutants.
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1. CHAPTER ONE: INTRODUCTION  

1.1 Background 

Exposure to traffic related pollutants has been associated with detrimental health 
outcomes like asthma (Brauer et al., 2007; McConnell et al., 2010) (1-2), and 
cardiovascular outcomes (Delfino et al., 2005) (3), coronary artery atherosclerosis 
(Hoffmann et al. 2007) (4), and an increase in mortality (Hoek et al., 2002) (5). 
Numerous studies (e.g., Leung and Harrison 1999; Westerdahl et al., 2005, Zhu et al. 
2007) (6-8) have shown that pollutant concentrations on or in the vicinity of roadways 
are frequently almost one order of magnitude higher than ambient levels.  

In-vehicle exposures to vehicle-related pollutants are frequently high, due to a vehicle's 
proximity to relatively undiluted emissions from other vehicles and the typically rapid air 
exchange rate (AER) inside vehicles (Fletcher and Saunders 1994; Ott et al. 2007; 
Rodes et al. 1998) (9-11), which drives pollutants to and from the cabin.  Often, In-
vehicle pollutant concentrations are approximately a magnitude higher than ambient 
levels for ultrafine particles (UFP) and volatile organic compounds (VOCs) (Leung and 
Harrison 1999; Westerdahl et al. 2005; Zhu et al. 2007; Chan et al. 1991; Duffy and 
Nelson 1997) (6-8, 12,13).  This has important implications for exposure assessment.  
For example, the less than 10% of daily time that is estimated to be spent in vehicular 
transit microenvironments (Klepeis et al., 2001) (14) has been predicted by Fruin et al. 
(2008) (15) to contribute 35-50% of total UFP and 30-55% of black carbon (BC) 
exposure for nonsmoking urbanites in Los Angeles under open window conditions and 
17% of UFP by Wallace and Ott (2011) (16) for more suburban locations. 
 
On an average 95 min per day spent in the in-vehicle microenvironment among 
Californians Furthermore, the Southern California Association of Governments (SCAG) 
predicts that commuting times will double by 2020 due to population growth in the LA 
area (SCAG 1997) (17), adding urgency to research evaluating the impact of increased 
vehicle-related exposures on people’s health.  But despite the demonstrated 
contribution of transit/vehicular microenvironment to the total exposure, it remains 
largely uncharacterized to date.   
 
Compared to other microenvironments, vehicles typically have rapid air exchange rates 
and more complex structure whereby a multitude of factors including traffic mix and 
density, type and age of the vehicle, roadway type, vehicle speed, ventilation setting, 
and weather conditions combine interactively to determine the in-vehicle pollution 
levels.  In effect, these factors can be divided into two categories; one of those that 
affect the I/O ratios (mostly physical characteristics of the car and drivers ventilation 
preferences) and the other of those factors that influence the roadway concentrations 
(like traffic and meteorological parameters). Therefore, to accurately assess the in-
vehicle exposure, not only is it crucial to know the AERs and I/O ratios for pollutants but 
also the roadway concentrations. Also, large variations in exposure incurred inside 
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vehicles are expected to occur not only due to differences in roadway environments but 
also because inside-to-outside ratios (i.e., in-vehicle to roadway concentration ratios) 
(I/O) vary from vehicle to vehicle due to differences in ventilation conditions and other 
vehicle characteristics that affect air exchange rate (AER), which is defined as the 
number of times per hour vehicle cabin air is replaced by roadway/outside air. In 
general, I/O ratios in vehicles can range from nearly zero to nearly one. Recent studies 
(Knibbs et al., 2010) (18) have shown that I/O is strongly dependent on AER. 
 
A few studies also characterized in-cabin air exchange rates (AER) under different 
driving conditions (Fletcher and Saunders 1994; Ott et al. 2007; Rodes et al. 1998) (9-
11).  All the studies showed a wide range of AERs during commuting.  For example, the 
Ott et al. study (2007) (10) found that the in-cabin AER ranged from 1.6 h-1 to 71 h-1, 
depending on vehicle speed, window position, ventilation system, and air conditioner 
setting.  For closed windows and passive ventilation, the AER was linearly related to the 
vehicle speed over a range from 15 to 72 mph.  The lowest AERs (<6.6 h-1) occurred 
when windows were closed and the ventilation system was off.  Opening a single 
window by 7.6 cm increased the AER by 8–16 times.   
 

Pui et al. 2008 (19) and Qi et al. (20) 2008 have experimentally demonstrated that a 
dramatic reduction can be achieved in UFP concentration in-cabin with use of 
recirculation setting and consequent filtration, but did not establish a link with AER.  
Only two major studies have been identified that have observed the behavior of UFP 
inside the vehicle cabin when moving in real on road conditions.  Recently, Knibbs et al. 
(2010) (18) studied the UFP in five cars and reported a high correlation between inside-
to-outside UFP concentration ratios and AER (r2 = 0.81), with somewhat higher losses 
with the recirculation ventilation setting.  They report ratios in the range 0.08-0.47 when 
recirculation setting was on with low fan and 0.17-0.68 with fan off.  Another major study 
by Zhu et al. 2007 (8) also report that maximum particle losses (~85% reduction in in-
cabin concentrations) were observed at recirculation settings.  This study tested three 
vehicles on Los Angeles freeways. They also suggest that an hour of commute in Los 
Angeles can be responsible for as much as 50% of daily UFP exposure. Both of these 
studies performed measurements under real driving conditions (multiple speed and 
ventilation conditions) and found that ventilation preference (windows open, outside air 
intake or in-cabin air recirculation) and ventilation fan setting strongly influences AER 
and the resulting I/O ratio. However, these studies are limited in nature and the current 
state of literature does not sufficiently address the epidemiological needs to assess 
exposure at a large scale. No studies have been identified that systematically assess 
exposure to gaseous pollutants during in-vehicle transit.  
 
As mentioned previously, accurate prediction of in-vehicle exposures requires not only 
an estimate for I/O but also knowledge of on-road pollutant concentration.  
Recently, a few studies have tried to characterize the roadway concentration of 
pollutants. Westerdahl et al. (2005) (7) conducted a mobile platform study in Spring, 
2003 using a 1998 electric Toyota RAV4 SUV. The study showed relatively high 
correlation of UFP with nitrogen oxides (NOx), black carbon (BC), and PM-bound 
polycyclic aromatic hydrocarbons (PM-PAH).  Fruin et al. (2008) (15) conducted in 
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depth data analysis for this mobile platform study.  They showed that on freeways, 
concentrations of UFP, BC, NOx, and PM-PAH are generated primarily by diesel-
powered vehicles, despite the relatively low fraction (6%) of diesel-powered vehicles on 
Los Angeles freeways.  However, UFP concentrations on arterial roads appeared to be 
driven primarily by proximity to gasoline-powered vehicles undergoing hard 
accelerations.  The Fruin et al. (2008) (15) results were promising since it demonstrated 
that in-vehicle exposures can be estimated using statistical models that incorporate 
traffic activity, meteorological conditions, and other relevant parameters.  However, 
most of their measurements were conducted from 9 AM to 3 PM, which deliberately 
avoided traffic congestion times.  Results from the southern California Regional Travel 
Survey showed that approximately 35% of trips occur from 9 AM to 3 PM, while 41% of 
the trips occur during rush hour from 6 AM to 9 PM and from 3 PM to 7 PM (SCAG 
2003) (17).  Considering much higher pollutant concentrations during congestion and 
the significant fraction of commuting time people spent during morning and afternoon 
traffic congestion hours, it is important to characterize and model in-cabin exposure 
during traffic congestion conditions.  Moreover, the study provided insight into different 
patterns of concentrations on freeways and arterials; however, their results were not 
generalized for arterials streets although approximately half of the vehicle miles traveled 
are on major arterials in the region (Houston et al. 2004) (21).   
 
Nonetheless, the interest in assessing transit time exposures has been growing. A 
recent review by Knibbs et al. 2011 (22) identified 47 UFP exposure studies performed 
across 6 transport modes: automobile, bicycle, bus, ferry, rail and walking. They 
concluded the following  

“While the mean concentrations were indicative of general trends, we found that the 
determinants of exposure (meteorology, traffic parameters, route, fuel type, exhaust 
treatment technologies, cabin ventilation, filtration, deposition, UFP penetration) 
exhibited marked variability and mode-dependence, such that it is not necessarily 
appropriate to rank modes in order of exposure without detailed consideration of 
these factors.“ 

 
In summary, at the time of undertaking this study, the following limitations existed in the 
literature. 
 
1. AER measurement existed for only 16 vehicles in real driving conditions, which were 

not systematically tested. Only Fletchers and Sunders et al. 1994 (9) had made an 
attempt to quantify the AER. As a result of a) small sample size b) differing 
methodologies in different studies, and c) missing information on variables that 
determine AER in many studies, the results on AER could not be conclusively tied to 
determinant factors. Furthermore, they could not be extrapolated with confidence to 
produce estimates at a fleet-wide level as is desired in an epidemiological study or 
for population risk assessment.  

2. I/O measurements existed in even fewer vehicles. Only two studies measured them 
under realistic condition (Zhu et al., 2007, Knibbs et al., 2010) (8, 18). Of them only 
one study Knibbs et al., 2010 (18), measured I/O rations in such a manner that they 
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could be related to a quantifiable parameter like AER or vehicle speed. Nonetheless, 
no systematic attempt had been made towards understanding the following:  a) what 
factors drive I/O under real driving conditions, and b) the order of influence of these 
factors that could help epidemiologists design a questionnaire to gather such data 
for large population studies. 

The gap in knowledge prior to the present study prevented any generalization based on 
the above previous studies to predict in-transit exposure of individual subjects in 
epidemiological studies.  In addition, none of the previous studies were directly intended 
for linkage to any health outcome research.   
 

1.2. Scope and Purpose of the Project  
 

The main purpose of the study was to collect in-vehicle air pollution data in Southern 
California, develop and validate in-vehicle exposure models, and apply the model 
results to help estimate in-vehicle exposure for subjects in future epidemiologic studies.  
The results of exposure modeling in this study may be used to develop similar models 
elsewhere in California or the US, but they would likely have to be validated by other 
investigators for the specific region.  We were especially interested in developing these 
modes for use in future cohort studies.  The modeling approach was designed for such 
use as discussed below and was intended to be useable with data collected in 
epidemiologic studies having detailed time-activity data and information about a 
subject’s vehicle including easily-obtainable information like make, mileage and year.   
 
To this end, we measured and modeled in-cabin concentrations of key air pollutant that 
are expected to serve as markers of exposure to complex mixtures of primary 
combustion aerosols and gases (e.g., BC, NOx and ultrafine particle numbers [UFP]).  
We aimed to produce data to fully characterize the variability in a range of different 
pollutant concentrations in vehicles, including validating the in-vehicle exposure models 
using separate measurements of particle-bound PAH. 
  
This project was intended to enhance our ability to estimate personal exposure to 
vehicle-related air pollutants. This could then be used in future studies to evaluate 
hypotheses regarding the role of air pollution exposure from the in-vehicle environment 
on the development and exacerbation of chronic diseases, including asthma and 
cardiovascular disease. The results and products of the proposed study are anticipated 
to be crucial in obtaining funding to study the health impacts of in-vehicle exposures. 
There are few published studies to our knowledge that have systematically examined in-
vehicle exposure and the health effects of such exposure.  The exception being studies 
of acute cardiorespiratory effects using quasi-experimental in-vehicle exposures (Adar 
et al. 2007a; 2007b; Riediker et al. 2005) (23-25).  However, epidemiologic studies have 
explored the associations between traffic generated pollution and risk of developing 
asthma (Brauer et al. 2007; McConnell et al. 2010), (e.g., 1,2) adverse birth outcomes 
(Wu et al. 2009, Gehring et al. 2011, Brauer et al. 2008) (e.g., 26-28), and evidence of 
coronary artery disease (Hoffmann et al. 2009) (4).  The present study will provide 
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measurement data and develop models to estimate chronic exposure-response 
relationships. This research is envisioned to augment exposure assessments for the 
work, home and neighborhood environments.  
 
We built models that are intended to enhance our ability to incorporate estimated 
exposure from time in vehicles into health effects models.  The in-vehicle environment 
has been largely ignored in previous epidemiological studies.  The availability of data 
generated from this study will present a unique opportunity in future studies.  For 
instance, it is not known whether in-vehicle exposure to air pollution during pregnancy 
adversely affects birth outcomes and promotes the occurrence of atopic sensitization 
and childhood respiratory diseases, including asthma.  It is conceivable that health 
impacts from in-vehicle exposures will be as important, or more so, than exposures 
linked to the outdoor home environment, especially in the region of study.  The 
exposure modeling provides results that will allow quantitative estimates of in-vehicle 
exposure to key pollutants given known driving conditions and other parameters.  It will 
guide epidemiological studies focused on commuters’ health outcomes, and help inform 
policy decision makers concerning motor vehicle emissions control. 
 
The present research is among the first to systematically examine in-transit exposure 
and the conditions that drive major changes in exposure, and to develop models that 
can be used to estimate in-transit exposure for subjects in epidemiological studies.  
Methods could be adapted to regions where driving conditions and meteorology differ 
from southern California.  The real-time data on gases and particulate air pollutants 
within vehicles will also provide information needed to support emission regulations for 
vehicles and effective pollution control strategies.   
Three major strengths of this study are:  
1) Use of representative vehicle types, roadway types, traffic fleets, driving conditions, 

seasons, and time of day;  
2) Combining in-cabin measurements with real-time route information (through a GPS 

device), roadway information, and available traffic count data; and  
3) Testing of identified predictors of exposure using subjects under normal commuting 

conditions.   
 
Models developed in this study will enable us to directly study the relationship between 
in-vehicle air pollutant exposures and the health of Californians.  The findings of this 
study will have direct application to CARB’s Vulnerable Populations Research Program 
and to evaluations of air quality standards for PM and gas pollutants.  Results are 
expected to advance understanding of the potential for adverse effects of vehicle-
related air pollutants. 
 

1.3. Tasks 

Overview 
We conducted an in-vehicle exposure monitoring and modeling study.  The target study 
region for this proposal included the counties of the South Coast Air Basin that are 
anticipated to be of interest for epidemiologic research, namely, Los Angeles, San 
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Bernardino, Riverside and Orange Counties.  Effort was made to collect representative 
measurements on not only freeways but also arterial roads – over varying traffic 
conditions, time of day, day of week and seasons. This enhanced variability in 
characteristics of particles, and enhanced the external validity of findings to populations 
at risk.   

 

The following tasks were completed: 

1. Examine differences between vehicles for in-cabin pollutant concentrations by 
vehicle type and age during realistic driving conditions in southern California.   

1a. Field Measurements.  We measured AERs in over 60 vehicles at 3-4 speeds per 
vehicle (Phase I of III), in addition to stationary measurements to establish baseline 
AER. Two lower speeds (20 and 35 MPH) helped estimate AERs during typical 
arterial driving conditions and two higher speeds (55 and 65 MPH) helped estimate 
AERs during freeway driving. In addition to AERs, measurements were made for 
PM2.5 and total particle number concentration. Furthermore, vehicles were selected 
to match the distribution in California fleet for age, mileage, and vehicle class and 
manufacturer.  

1b. Data Analyses.  First, we developed a novel methodology to derive AER 
measurements.  Second, we examined the influence of vehicle type, age, mileage, 
manufacturer and driving speed on AER, in addition to the most crucial determinant 
of AER ventilation choice (outside air intake or recirculation of cabin air). Third, we 
developed a model to estimate AER.  

2. Examine the impact of important influential factors that contribute to in-cabin 
pollutant concentrations. 

2a. Field Measurements.   

This task was conducted in two additional phases. Phase II explored the factors that 
determine I/O ratios.  We sought to examine the factors that influence I/O ratio and 
factors that influence roadway concentrations separately. This approach allowed the 
development of a systematic understanding in each phase and allowed us to 
conduct additional roadway sampling to successfully capture data under varying 
conditions (ranging from seasons to time of day).  

In Phase II, we measured a number of pollutant concentrations using a hybrid-
electric vehicle on five selected routes that covered the southern California region of 
interest.  Measurements were conducted on weekday/weekends, different times of 
day, and in both warm and cool conditions.   Air pollutants included Aethalometer 
BC, total particle counts (CPC), particle-bound PAHs (PAS), NO-NOx, CO, and 
CO2.  In addition to measuring PM2.5 mass using a DustTrak we also stored particle 
filter samples for future analysis of chemical species as a function of particle size 
(PCIS) after measuring gravimetric mass. 
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Phase III explored the factors that determine I/O ratios. In Phase III, six 
representative cars were chose from the fleet previously tested in Task 1 and tested 
at different driving speeds, fan settings, cabin filter loadings, and ventilation 
conditions (outside air or recirculation). 

2b. Data Analyses.   

We examined the impact of roadway types, traffic characteristics, temporal factors, 
and meteorology (including seasonal effects) on roadway pollutant concentrations. 
Further the influence of speed, ventilation fan setting, filter loading and particle size 
was quantified for UFP I/O.Estimate emission factors of PM pollutant concentrations 
based on roadway and urban background site measurements and CO2-based 
dilution adjustments. 

Measurements for gas and particulate phase pollutants were performed using a 
mobile platform during the summer of 2011 on various Los Angeles freeways.  Fuel-
based emission factors (EF) were calculated for light-duty vehicles (LDV) and heavy-
duty vehicles (HDV).  The fractional contribution of HDV to total NOx was calculated 
for different freeways including those with larger proportions of HDV.  We also 
compared morning and afternoon rush hours, and midday traffic for speeds, truck 
fraction, VMT and per mile emissions.   

3. Develop and validate in-vehicle exposure models for BC, UFP number, PM2.5, 
particle-bounded PAH, and NOx.  

The models incorporated data from Tasks 1-2 on time of day, season, car types, 
driving conditions, roadway types, traffic characteristics, and meteorological 
conditions and were developed based on a training dataset (70% of randomly-
selected measurements) that was validated against the remaining 30% random 
validation sample.  K-fold cross-validation was also used to validate the models for 
each of the selected pollutants.   

4. Validate the in-vehicle exposure model for particle-bound PAH against 
measurements in representative subjects. 

We used data from a pregnancy cohort of  92 women who completed a time-activity 
questionnaire at baseline and carried a GPS devise to track movements over one-
week for three different pregnancy periods (<20 weeks, 20-30 weeks, and >30 
weeks of gestation) (NIH, NIEHS R21 ES016379, Wu).  Twenty-five of these 
subjects also carried portable personal exposure monitors for particle-bound PAH 
(EcoChem PAS) for one-week (including weekdays and weekends) during their 
commutes.  However, BC data collected in 9 of those subjects were insufficient for 
modeling due to instrument problems.  These data are from working subjects in real 
world driving conditions.  They were used as a first test the predictive ability of 
variables identified from the models developed in Task 4. 
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In-vehicle Testing Procedures for Tasks 1-3 

Vehicle testing was conducted in three phases as follows: 
Phase I (Task 1) tested a large, representative sample of vehicles for air exchange rate 
(AER).  This was performed by measuring the decay rate of CO2 at various fixed speeds 
and ventilation conditions.  In addition, a series of alternating closed (with recirculation) 
and open window tests were conducted to test each vehicle’s air movement systems for 
losses of particle number or particle mass.    
 
Phase II comprehensively measured on-road concentrations on various road types 
across the LA Basin for multiple pollutants at different times of day and in different traffic 
conditions.   
 
Phase III involved simultaneously measuring inside and roadway (outside) 
concentrations for various pollutants under different ventilation conditions to measure 
attenuation factors (AF), the loss rates for each pollutant. 
 
On-road concentrations drive in-vehicle concentrations.  We can assume that in-vehicle 
concentrations are a predictable function of on-road concentrations with losses reflected 
by some pollutant-specific AF such that: 
C in-cabin = C on-road * (1 – AF) 
where  C on-road  = f (traffic and truck volumes, meteorology, road type, lane, speed, 
etc.); 
AF = f (AER, pollutant, cabin surface-to-volume ratio, fan setting) (see Phase III); and  
AER = f (speed, vehicle type, age / mileage) if windows closed and ventilation is set to 
recirculate (see Phase I), otherwise, 
AER = f (speed) if windows open or ventilation is set to outside air with fan on. 
The latter situation tends to produce much higher AERs.  
 
Of all the measurements proposed, the on-road concentrations are the most widely-
ranging and rapidly-changing measurement we needed to make, being a function of 
constantly-changing traffic mix, traffic conditions and meteorology, which all vary 
greatly.  By measuring AERs and AFs under more controlled conditions in separate 
tests, we were able to determine each with greater accuracy.  Furthermore, by 
measuring on-road concentrations directly without the modifying effects of different 
AERs and AFs, we gain simplicity and reduce measurement variability, which was 
intended to make the effects of on-road variables more distinct and easier to model. 
 

Phase I.  Testing of Air Exchange Rates 
We measured air exchange rates (AERs) in vehicles using a hand-held QTrak (and/or 
LI-COR 820) to measure CO2 decay rates while driving at near-constant speeds (e.g., 
20, 40 and 60 mph, or similarly-spaced intervals, depending on available routes and 
speed limits).  Windows were closed and the ventilation conditions set to:  
-- fan off and recirculation off  
-- fan on low and recirculation off (outside air)  
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-- fan on medium or next higher level and recirculation off (outside air) 
-- fan on low and recirculation on (with air conditioning on) 
 
The LI-COR 820 CO2 monitor was used because it has a faster response since it is 
pump driven and has a higher upper range than the QTrak, although the QTrak was 
certainly adequate for AER tests.  The LI-COR was needed for on-road measurements 
(Phase II) where CO2 is used to calculate dilution rates or emission factors.  In those 
tests, CO2 concentrations frequently fluctuate rapidly.  During and after the AER tests, 
several battery-operated instruments (DustTrak, Aethalometer, and CPC) were run to 
provide supplementary pollution concentration measurements, since these instruments 
could be included with no additional fixturing required and little additional labor.   
 
Routes were chosen for low traffic levels and the ability to drive continuously at a given 
speed with no stops for the duration needed. Duration needed is determined by the 
lowest AER expected.  The lowest AER for a moving vehicle reported in the literature is 
1.6 hr-1 at 20 mph, as reported by Ott et al. (2007) (10).  This AER would require about 
26 minutes to halve a given CO2 concentration, and require about 9 miles of driving.  
Minimum distances to reduce CO2 a given amount will decrease as speeds increase 
due to the non-linear increase in AER with speed.  Most vehicles will have much higher 
AERs than this example and require much shorter driving distances. 
 
The test began at the start of the selected route with two researchers building up in-
cabin CO2 levels inside the test vehicle via respiration with windows closed and the car 
motionless.  Because the rate of CO2 build-up rate will reflect the source CO2 term and 
the air exchange rate while stationary, the QTrak also recorded during this build-up 
time.  During build-up and all decay tests, cabin air was kept well mixed by a battery-
operated fan or vehicle fan set to recirculate.  The target CO2 level for build-up was 
4000 ppm. 
 
When 4000 ppm CO2 was reached, the car was driven at a fixed speed, ideally within 
±2 mph, according to the judgment of the driver, traffic conditions, and safety (to be later 
verified by on-board GPS).  The passenger seat observer recorded the time, to the 
second, for each 100 ppm decrease in CO2 as back-up to the QTrak memory.  The test 
was complete when the CO2 concentrations reach 1000 ppm or begin to flatten out, 
whichever comes first.  If constant speed was significantly interrupted, the test was 
repeated.  If the vehicle AER appeared too low to complete the test on the selected 
route, the next higher speed was attempted. 
 
When AER tests were complete, a series of alternating open and closed window tests 
(with air set to recirculate) were made at constant speed to test the effect of each 
vehicle’s air handling unit on particle losses.  Losses were determined by comparing 
inside and outside PM mass, black carbon, and particle number from the battery-
operated instruments.  Each condition was held for two minutes or until conditions reach 
steady state, whichever was longest, and a minimum of five alternating pairs of 
measurements were collected for each vehicle. 
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Cars were chosen in an attempt to get representative data for the California fleet.  Each 
vehicle tested for AER had its mileage, age, internal and external condition recorded, its 
internal dimensions measured, and the ventilation system options and operation were 
carefully noted, especially as to what the default ventilation settings are and if the 
system is semi-automated, what the most common settings end up being. 
 

Phase II.  Measurement of On-Road Concentrations  
Depending on instrument availability, black carbon, particle number, PM2.5, particle-
bound PAHs, NOx, CO and CO2 were continuously measured.  Measurements took 
place in a hybrid vehicle outfitted with instruments, batteries and inverter, along with 
GPS and video.  Hybrid vehicles have the advantage of no emissions while stopped, 
which is a situation where a vehicle’s own exhaust can sometimes get sampled.  
Measurements were made in morning rush hour, noontime non-rush hour, afternoon 
rush hour, and nighttime non-rush hour with realistic driving. 
 

Phase III  Measurement of Pollutant Loss Rates (Attenuation Factors) 
Pollutants with significant surface reaction or deposition loss rates will have potentially 
important losses at low AERs, and these losses will increase as AER is reduced.  The 
losses will likely be highest for ultrafine particles (UFP), semi volatile species and may 
be potentially significant at sufficiently low AERs for black carbon, PM2.5, NO2 and CO.  
Although CO is non-reactive, significant CO removal rates can occur due to uptake from 
passengers at low AERs.  Under conditions of low AER, measurable particle uptake 
from passengers can also occur, but we could not distinguish between occupant-driven 
particle losses and those due to surfaces.  Thus, we assumed that under most 
circumstances, loss rates were not significantly different between one, two, and three 
occupants and that in the case where particle losses due to occupants is significant, our 
measurements reflected particle losses with two occupants present. We also assumed 
that any non-reactive, non-depositing pollutant will have 0% attenuation.   
 
We characterized the AF for each pollutant as a function of three variables: 1) AER, 2) 
cabin volume to cabin surface ratio, and 3) fan setting (at low AER and recirculating air).  
We also included low fan settings of outside air since this is a frequent default setting in 
many cars.  (The case of newer cars with particle filtration systems is addressed at the 
end of this section.)    
  
AER is a dominant factor because it drives the renewal rate of the pollutant being 
removed.  We can assume 0% AF for all pollutants when AER is high enough, such as 
with open windows at moderate speeds or higher, so these loss tests should emphasize 
closed windows conditions with ventilation set to recirculate.  After our extensive AER 
testing described below we knew identified vehicles with low AERs when outside air 
was being pulled in by the ventilation system (the common default setting noted above).  
We also included both recirculation and outside air fan settings in our tests.   Because 
AER is a non-linear function of speed for closed window conditions, relatively constant 
speeds were important for these tests, as described in Phase I. 
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The ratio of vehicle surface area to cabin volume may affect AF by increasing or 
decreasing the relative fraction of pollutant available to interact with surfaces, but we 
expect this effect to be not as pronounced as the effect of AER.  Vehicle interior surface 
area is difficult to measure, but can be approximated by assuming surface area from 
vehicle to vehicle is proportional to the seat area plus the area equivalent to the 
rectangular inner cabin dimensions.  Likewise, the cabin volume can be approximated 
by the rectangular volume of the inner cabin dimensions.  A distribution of the ratios 
based on these dimensions was collected from the vehicles used in the AER tests 
earlier in the study.                                                                                                                            
 
For removal processes that are diffusion rate limited, fan setting may also affect losses 
by enhancing mixing at higher fan speeds (and reducing boundary layer depletion next 
to surfaces) and also by inducing turbulence in the air movement system, which tends 
to increase deposition rates.    
 
To include all of these variables, we used a measurement matrix of 6 surface-to-volume 
ratios (using three vehicles) x 10 combinations of AER and fan settings (low and high 
settings for recirculating air and a low setting for outside air, all with windows closed).  
AERs can be based on our measured AER quartiles (25, 50, and 75th percentiles).  
Surface-to-volume ratios were chosen to cover low, medium, and high ratios.                
 
For newer cars less than five years old that may have particle filtration systems, we first 
tested for the presence of filtration by observing the difference in UFP concentration 
when the ventilation setting is set to outside air and the fan is on medium or high, while 
alternating between open and closed windows.  If incoming air is being filtered, closed 
windows will cause sharp drops in UFP levels.  For cars with filtration systems, we 
established the filtration efficiency for UFP and PM2.5 at low vehicle speeds (i.e., 20 
mph) by multiple iterations of the above closed versus open window tests, alternating 
every 60 seconds on roadways with low traffic and reasonably stable UFP 
concentrations.  When the filter efficiency is established, we assumed this is the 
dominant loss mechanism for particles and the AF were 1.0 minus the filter efficiency.  
Tests were then conducted as described above.  We assumed that few if any vehicles 
have working activated carbon filtration systems for removal of gaseous pollutants.  
 
Lastly, if the open/closed window tests in Phase I indicated that significant particle 
losses occur in certain vehicle types (or certain air movement system types) when the 
ventilation system is set to recirculation, one or more of each of these vehicle types (or 
air movement system) were included in Phase III tests, excluding the modifications of 
surface-to-volume ratios. 

 

In the each of the following Chapters, which are divided by Tasks, we give an 
introductory overview, describe the materials and methods, present the results 
with discussion, and end with a summary and conclusions section. 
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2. CHAPTER TWO: A PREDICTIVE MODEL FOR VEHICLE AIR EXCHANGE 
RATES BASED ON A LARGE, REPRESENTATIVE SAMPLE 

(based on Task 1. Examine the primary differences between vehicles for in-cabin 
pollutant concentrations by vehicle type and age during realistic driving 
conditions in southern California, and add a comprehensive evaluation of air 
exchange rates [AER]) 

 

2.0 INTRODUCTION 
The in-vehicle microenvironment is an important route of exposure to traffic-related 
pollutants. In-vehicle exposures are high due to vehicles’ frequent proximity to relatively 
undiluted emissions from other vehicles, particularly in urban areas; the typically rapid 
air exchange rate (AER) inside vehicles (1-6); and the average 80 min per day spent by 
people in the U.S. in the in-vehicle microenvironment (7). Jenkins et al. (8) reported that 
Californians spend 7% of their time (100 minutes) in enclosed transit.  
 
On-road and in-vehicle concentrations of traffic-related pollutants are typically an order 
of magnitude higher than urban ambient concentrations (9-11). The pollution 
concentrations inside a vehicle generally match the roadway concentrations when there 
is sufficiently high air turnover. This occurs whenever windows are open, whenever 
outside air is drawn into the vehicle through the ventilation system, or when a vehicle is 
sufficiently leaky. However, under conditions of sufficiently low air exchange rate, i.e., 
only a few air changes per hour, there can be significant reductions in particle mass and 
particle number due to losses to vehicle internal surfaces (12, 13). Conditions of low air 
exchange usually only occur for newer cars, for which door seals and insulation are 
tightest, and/or at low speeds where air flow dynamics are not producing large 
differences in pressure around the vehicle. If the air exchange rate (AER) of a vehicle is 
known, the particle losses can be estimated (12); however, AERs are usually not 
known, and are highly variable even for the same vehicle, as they vary widely with 
speed (1, 4, 6).  For example, Knibbs et al. (1) found AERs to vary from 1 to 33 air 
changes per hour (hr-1) across six cars at a speed of 60 km hr-1. 
   
Few studies have characterized AERs.  The largest study to date has been Knibbs et al. 
(1) who measured AER using SF6 as a tracer gas for six vehicles spanning an age 
range of 18 years at various speeds and under different ventilation settings. At speeds 
of 60 km hr-1 and 110 km hr-1, they found AER to range from 1 to 33 hr-1 (mean 11.2) 
and 2.6 to 47 hr-1 (mean 18), respectively.  They also tested cars at zero speed and 
reported AERs within the range 0.1-3.3 hr-1  with five cars having AERs <1/hr.  Ott et al. 
(4) reported AERs in the range of 1.6-8.2 hr-1 for vehicles up to 10 years old tested 
using CO as a tracer gas.  They also provide an excellent review of previous studies on 
the subject.  Batterman et al. (14) report an AER of 92 hr-1 for a vehicle (Subaru Legacy 
2000) traveling at 105 km hr-1 when ventilation was set to intake fresh air.  Kvisgaard 
and Pejtersen et al. (15) also report AERs for a traveling vehicle for fresh air intake 
ventilation setting at various speeds.  
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AERs observed during conditions that bring fresh air into the cabin (either via ventilation 
system set to fresh air supply or by opening windows) can be a magnitude or higher 
compared to those observed at internal air recirculation settings.  Knibbs et al. (1) 
conducted experiments for six cars and showed that even at lowest fan settings, AERs 
were typically over 100 hr-1, even at zero speed, thus making the determination of AER 
unnecessary from an exposure standpoint, as in-vehicle concentration will equal on-
road concentration at such high levels of air turnover.  Ott et al. (4) found similar results 
when opening the windows by 3 inches increased AERs 8-16 times.  
 
When windows are closed and recirculation is used, AER tends to be minimized and in-
vehicle particle concentrations are also minimized due to particle losses.  Knibbs et al. 
(16) tested the same five cars used in previous AER measurements of 2009 and found 
high correlation between inside-to-outside UFP concentration ratios and AER (r2 = 
0.81), with somewhat higher losses with the recirculation fan on.  They report ratios in 
the range 0.08-0.47 when recirculation setting was on with low fan and 0.17-0.68 with 
fan off.  Zhu et al. (11) also report that maximum particle losses (~85% reduction in in-
cabin concentrations) were observed at recirculation settings.  Pui et al. (17) and Qi et 
al. (18) have experimentally demonstrated that a dramatic reduction can be achieved in 
UFP concentration in-cabin with use of recirculation setting and consequent filtration.  
 
Beside the work by Ott et al. (3, 4), Knibbs et al. (1), Rhodes et al. (6) and Fletcher and 
Saunders (19), (a total of 16 cars tested), others have tested AERs in stationary 
vehicles, but not during on-road conditions, where most of the travel time exposure 
occurs.  
 
The purpose of this task was to test a sufficiently large number of cars to develop robust 
predictive models of AER that allow estimating vehicle AER as a simple function of 
readily-available information, such as vehicle age, mileage, manufacturer, and average 
speed.  One important application of these models is epidemiological studies of 
particulate matter (PM), especially for coarse PM (CPM, PM2.5-10, 2.5 µm< Dp< 10 µm) 
or ultrafine particulate matter (UFP, Dp < 0.1µm).  CPM and UFP show sharp near-road 
gradients and high on-road concentrations.  For these pollutants, excluding commute 
and/or travel time in exposure assessment introduces large exposure estimate errors.  
However, excluding CPM or UFP in-vehicle loss rates in in-vehicle exposure 
assessment would also produce significant exposure estimate errors for drivers of 
newer cars and drivers with significant time at slow speeds. Nevertheless, there is a 
particularly important need to better characterize exposure to ultrafine particles, since 
few such epidemiological investigations have been attempted.  Fruin et al. (20) 
calculated that 33-45 % of UFP exposure occurs while driving based on typical micro-
environmental concentrations and time spent in each.  
 
In this task, we measured AERs at three speeds for each of 59 California vehicles, 
chosen to represent the California fleet with regard to age, vehicle type, and 
manufacturer.  These results more than triple the number of vehicle AERs reported in 
the literature and provide for the first time a sample of vehicles that is large enough to 
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be considered reasonably representative of the current fleet of California vehicles 
and/or the U.S.  
 
This task also demonstrated that using CO2 to calculate vehicle AER is a relatively 
straightforward and accurate alternative to the use of tracer gases, which require more 
specialized measurement instruments.  The ease of this method was one reason for the 
large number of vehicles tested.  Since vehicle AER varies more than an order of 
magnitude between vehicles, a large sample number is necessary to fully characterize 
vehicle AERs. 

   

2.1  MATERIALS AND METHODS 

2.1.1 Vehicle selection   
Vehicles were selected to approximate the distribution of the California fleet in terms of 
vehicle size type (e.g., subcompact, compact, midsize, etc.), mileage, and age. Vehicle 
size data were based on  the dataset of the 2002 report by the California Department of 
Motor Vehicles to the California Air Resources Board in support of their mobile source 
Emission  Factors model (EMFAC)  database), the latest available at the time of initial 
study design (21). Data on fleet mileage and age were based on 2009 data. Target 
numbers of test vehicles for each size category were calculated based on the frequency 
of these size categories multiplied by the fraction of the fleet that was five years old or 
newer (30%), 6 to 14 years (53%), and 15 years or older (17%) (California New Car 
Dealers Association (CNDCA), 2010) (22). Within these categories, an attempt was also 
made to select vehicles from the manufacturers having the largest sales in California 
(e.g., Toyota Corolla, Honda Civic, etc.) but there were no specific requirements by 
manufacturer. 
   
80% of the cars tested were obtained through California Air Resources Board (CARB) 
vehicle testing programs. The CARB selects cars for its dynamometer emissions testing 
program through randomly selecting cars from California Department of Motor Vehicle 
records. Each car tested was selected for AER testing if it fulfilled any of the size and 
age categories described above. Thus, the cars tested for our AER testing were 
randomly selected within a size and age category. However, there is some bias in 
actual participation rates of the program, with fewer very new cars obtained than in the 
California fleet. To remedy this under-representation of very new cars, we rented 
additional cars of model year 2007 and newer from an hourly car rental business. 
Lastly, certain size categories of older cars were relatively rare, so to obtain older cars 
of certain size, word-of-mouth recruiting was conducted among USC graduate students. 
This provided five cars of average age 1998 and one new 2010 model car. The three 
groups of cars, new rentals, CARB-selected, and USC student-owned were analyzed 
both as separate groups and collectively, as a test to ensure that no particular group 
gave AER results that indicate significantly different AER behavior, as described in the 
results section.  
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2.1.2  Instruments.  
CO2 was measured both inside and outside the vehicle simultaneously using two or 
more TSI Q-Traks, Model 7565 (TSI Inc., MN, USA) and one or more LI-COR Li-820 
units (LI-COR Biosciences, NE, USA). Both units use a non-dispersive infrared (NDIR) 
detection technique, but the LI-COR unit is pump driven, thus allowing a faster response 
time than the Q-Trak unit, e.g., several seconds versus 20 seconds. The LI-COR’s 
optical bench requires 10 minutes to warm-up to specified temperature but a longer 
warm-up of approximately 1.5 hours is required to bring the performance of the unit to 
within 1 to 2% of reading. All instruments used for a given vehicle test were run 
simultaneously and ambient concentrations before and after a run were checked for 
consistency. An on-board GPS device (Garmin GPSMAP 76CSC) recorded the location 
and speed of the car at 1-second intervals. All instruments were synced to within 1 sec 
of the time recorded by GPS.  

 

2.1.3  Air Exchange Rate Determinations.  
Carbon dioxide was chosen as an AER indicator for its low toxicity, ease of 
measurement, and its ready availability when using car occupants as the source. At a 
fixed vehicle speed (and hence fixed AER), in-vehicle CO2 concentrations change until 
an equilibrium concentration is reached whereby the source of CO2 from vehicle 
occupants is balanced by the losses of CO2 due to exchange of low-CO2 outside air with 
high-CO2 inside air. This difference is typically hundreds or thousands of parts per 
million (ppm) of CO2, so it is easy to measure with high relative accuracy. Well-mixed 
conditions were created by mixing the in-vehicle air with a fan during these 
measurements. The well-mixed assumption was verified for each test by checking 
agreement with Q-Trak and Li-820 instruments located in different locations within the 
car. 

  

2.1.4 Mathematical Equation and Assumptions.  
AER increases with increasing vehicle speed due to pressure differences and/or 
turbulence around the vehicle. However, for a given vehicle speed (strictly-speaking, the 
vehicle air speed), the AER is nearly constant and the CO2 concentrations inside the car 
will reach an equilibrium value when the CO2 source rate is balanced by the 
replacement of high, in-vehicle CO2 with lower outside CO2 concentrations, according to 
the mass balance Equation 2.1: 
   

Equation 2.1 

�
𝑑𝐶in

𝑑𝑇
�𝑉 = 𝑆 + (𝐶amb − 𝐶in)(𝐴𝐸𝑅s)𝑉    𝑜𝑟  �

𝑑𝐶in
𝑑𝑇

� = 𝑆/𝑉 + (𝐶amb − 𝐶in)(𝐴𝐸𝑅s) 

where, S/V is the vehicle-volume-specific source strength in ppm per hour, Camb and Cin 
the outdoor and in-vehicle CO2 concentrations (ppm), respectively, and AERs is the 
speed- and vehicle-specific air exchange rate (hr-1). 

If we assume a small air exchange rate when the car is stationary, and we keep the 
interior air well mixed, the vehicle-specific source term can be determined by the initial 
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build-up rate of CO2 when inside and outside CO2 concentrations are similar, i.e., the 
((Camb - Cin) * AER) term in Equation 2.1 is much smaller than the S/V term. For 
example, for  <10 ppm difference in inside versus outside CO2, and an AER of 2 hr-1, 
the  ((Camb - Cin) * AER) term is 20 ppm per hour per unit volume,  compared to a typical 
build-up rate of 1500 ppm per hour per unit volume for two occupants, or less than one 
per cent.   

Under these conditions, Equation 2.1 becomes Equation 2.2: 

Equation 2.2 

�
𝑑𝐶in

𝑑𝑇
� ≅  𝑆/𝑉 

When the vehicle is in motion at a steady speed, eventually the inside concentration will 
reach an equilibrium value, Ceq,  when the interior source of CO2 is balanced by the air 
exchange of lower-concentration CO2 outside the vehicle with higher-concentration CO2 
inside the vehicle, and Equation 2.2 becomes 

Equation 2.3 

�
𝑑𝐶in

𝑑𝑇
� = 0 = 𝑆/𝑉 + (𝐶amb − 𝐶eq)(𝐴𝐸𝑅s) 

which can be re-written as   

 

Equation 2.4  

𝐴𝐸𝑅s = (𝑆/𝑉)/(𝐶amb − 𝐶eq) 

2.1.5  Determination of Source Strength  
The source rate of CO2 was measured by the rate of initial CO2 increase for a given set 
of occupants in a given car when the car was not moving and windows were up. (For a 
fixed source rate of CO2, the build-up rate S/V also varies by interior volume). This 
initial rate of CO2 build up approximates the condition of zero CO2 infiltration since AER 
is generally low when a car is stationary (i.e., less than 3 hr-1) and the initial difference in 
CO2 concentration between inside and outside is zero. For leakier cars, a stationary 
AER was calculated where possible using the CO2 concentration when it reached 
equilibrium, but for most cars, this level exceeded the range of the QTrak (0-5000 ppm), 
and in those cases only the data from the LI-COR 820 CO2 monitor were used. 
Repeated measures of CO2 build-up were made for 10 vehicles.  
 

2.1.6 Determination of Equilibrium Concentration  
AER was determined for steady speeds of 32, 56, and 89 km hr-1 with windows closed, 
ventilation set to air recirculation, and the fan setting set to either 50% or the closest 
possible to a midway setting. Early in the testing, it was verified that when the ventilation 
is set to outside air or the windows are open, the AER is extremely high and there are 
no measurable differences between inside and outside CO2. Equilibrium CO2 
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concentrations were determined when the criterion was met of a maximum fluctuation of 
50 ppm for at least the last 10 minutes at each speed. For conditions of closed windows 
and recirculating air, the fan setting can affect AER, although the contribution to total 
AER was found to be minor compared to that of speed. The effect of fan setting was 
tested for a subset of vehicles at several speeds.  

2.1.7 Speed   
Routes were chosen to allow nearly constant speeds. For speeds of 89 km hr-1, 
freeways were used during conditions of free-flowing traffic. For speeds of 32 and 48- 
56 km hr-1, runs were either made in a large cemetery or a continuous loop around the 
Rose Bowl in Pasadena, depending on the source location of the car being tested. Both 
of these routes allowed fairly short laps to prevent long duration in one direction, thus 
canceling any effect of wind direction and velocity on AER. Furthermore, there was 
minimal vehicular traffic on the roads at both locations during the times the tests were 
conducted. This minimized changes in outside CO2 due to the presence of exhaust 
plumes from other vehicles.  
   

2.1.8 Data Analysis 
Time series plots of speed, CO2, particle number, and fine particulate mass (PM2.5, Dp < 
2.5 µm) were aligned and adjusted to take into account any differences in instrument 
clock time or response time. Alignments were made based on events that caused a 
rapid concentration change, such as an open window rapidly reducing in-vehicle CO2.  
 
Where the in-vehicle CO2 concentration met the <50 ppm change criterion for a given 
speed, the exact equilibrium concentration was determined at the time where CO2 
concentrations showed a less than 2% standard deviation for at least 20 data points 
(i.e., > 3 minutes of data).  Concurrent outside CO2 concentration was then subtracted. 
For the 32 and 56 km hr-1 speeds, the outside CO2 concentrations at both the Rose 
Bowl and the cemetery were very stable, but the outside CO2 concentrations on 
freeways for the 89 km hr-1 condition were not. Therefore, freeway CO2 concentrations 
were averaged over the previous two minutes for each equilibrium value chosen.  
 
The AER is strongly related to speed. However, even after adjusting for speed, 
repeated measurements of AER on the same vehicle may be correlated (leaky car 
would have consistently higher AERs and a tight one lower AERs), violating the 
assumption of independent observations in multiple linear regression (MLR). 
Generalized estimating equation (GEE) models (23) with an exchangeable correlation 
structure and robust standard errors were used to account for the correlation and to 
estimate the average effect of predictors across the population of vehicles. MLR models 
were also fit to compare results across modeling techniques.  
 
The complete test results for the 59 vehicles tested, generally three AERs per vehicle 
(i.e., at three different speeds), were modeled to test the predictive power of vehicle 
characteristics such as vehicle mileage, age, and manufacturer. Squared and cubed 
terms for mileage, age, and speed were included to account for any non-linear effects. 
Vehicle characteristics such as interior vehicle volume and frontal area, and fan setting 
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were also included. Manufacturer variables included specific vehicle manufacturer 
categories such as Ford, GM, Toyota, Nissan, Honda, and ‘other’ as well as broader 
categories such as U.S. and non-U.S. or U.S., Japan, and ‘other.’  Vehicles were also 
grouped by the source of the vehicle (i.e., CARB, rental agency, or student volunteers) 
and tested for differences. Speed was included, both as a predictive variable as well as 
a stratifying variable, i.e., data were analyzed separately for a given speed. Since AER 
results had a strong rightward skew, a natural log transformation was used.

Parsimonious GEE and MLR models were obtained by backwards step-wise selection 
in which variables were retained if they improved R2 (MLR) or were statistically 
significant (GEE) at p=0.05 value. Residuals from both models were inspected to check 
model assumptions. R2 was calculated for the GEE model by taking the square of the 
Pearson correlation coefficient between observed and model-predicted values of natural 
log transformed AER.

2.2. RESULTS AND DISCUSSION

2.2.1 Vehicles Tested 
Achieving a representative sample of vehicles for testing was a primary objective of this 
task since representativeness enhances the utility of any predictive models of AER. We 
selected 59 vehicles to represent the California fleet in terms of vehicle age and size 
type based on EPA classes. Vehicles less than 5 years are slightly under represented in 
the project fleet. 

2.2.2 Equilibrium Values and AERs Calculated 

Figure 2.1: Typical Time-series plot for runs conducted at Cemetery along with the initial 
build up and freeway run. Average speed during Freeway run was 89 ± 10 km hr-1 for 
stable portion highlighted in black). The second black highlight corresponds to stable 
values during 51.1 ± 9.4 km hr-1 and 31.3 ± 5.5 km hr-1 speed runs. 
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A typical time-series plot of in-vehicle and outside CO2 concentration and speed is 
shown in Figure 2.1. As shown in this plot, the CO2 build-up rate at the beginning of the 
test is quite linear and the various in-vehicle CO2 concentrations at different speeds 
show an exponential change that eventually reaches a steady equilibrium concentration 
despite the small differences in speed. In Figure 2.1, the % standard deviations of the 
in-vehicle CO2 concentration were 1.0, 1.5 and 1.1% at 32, 56, and 89  km hr-1, 
respectively, while the outside CO2 concentration standard deviations were 4, 7 and 
1.4%, respectively. The resulting AER at 89 km hr-1 was 13.6 hr-1. If the in-vehicle CO2 
concentration deviated by the 1.1% (13 ppm) standard deviation observed, for example, 
the AER values ranged from 13.4 and 13.8, or +/- 1.5%. The change in AER values for 
48-56 and 32 km hr-1 changed +/- 2% and 1%, respectively, if in-vehicle concentrations 
deviated by the observed standard deviations.  
 
Figure 2.2 shows the results for all cars tested at each speed. The large vehicle-to-
vehicle differences are readily apparent, as is the strong dependence of AER on speed 
for a given vehicle.   

 
Figure 2.2: AER results for all 59 vehicles tested. 

2.2.3 GEE Model Results.  

The Generalized Estimating Equation (GEE) model gives the following predictive 
equation for AER as a function of easily-obtainable parameters related to each vehicle: 
Equation 1 

𝐿𝑛 (𝐴𝐸𝑅) =  0.63 −  (𝑎𝑔𝑒 ∗ 0.066) + ( 𝑎𝑔𝑒2  ∗  0.0058)  +  (𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 ∗  0.016)  
−  (𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠2  ∗  7.8 ∗ 10−5)  +  (𝑠𝑝𝑒𝑒𝑑 ∗  0.029)  +  𝑀𝑎𝑛𝑢𝑓 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 

Where ‘age’ is in years, ‘kilometers’ is vehicle lifetime mileage in thousands of 
kilometers, and ‘speed’ is in kilometers per hour. The manufacturer’s adjustment 
(‘Manuf Adjustment’, calculated as the regression coefficient using manufacturers as 
variables) is given in the last four rows of Table 1, with Japanese manufacturers being 
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the base case (i.e., no adjustment needed). Fan setting, although observed to slightly 
increase AER, was not significant, nor were vehicle size characteristics such as frontal 
area. The GEE model R2 was 0.70. AER is a non-linear function of speed and 
mileage/age and Figure 2.3, shows how the model-predicted AER strongly increases 
with speed for the median age and mileage in the study test fleet. Figure 2.3 shows how 
the model-predicted AER strongly increases with speed for the median age and mileage 
in the study test fleet, (8 years old and with 138,000 kilometers (about 86,000 miles), 
respectively). Figure 2.3 also shows how the model predicts AER to increase with each 
additional year of age assuming 23,000 kilometers per year (about 14,000 miles), the 
study average mileage change per year.  

 
Table 2.1: AER model coefficients, 95% confidence intervals, and P values. 

Source Value Standard 
Error z Pr > |t| 95% Confidence 

Interval 
Intercept 0.63 0.124 5.1 0.000 0.390 0.876 

Age (years) -0.066 0.043 -1.6 0.12 -0.15 0.018 
Age2 0.0058 0.0020 3.0 0.003 0.0020 0.0096 

Kilometers 
(thousands) 0.016 0.0076 2.2 0.025 0.0021 0.032 

Kilometers2 -
0.000078 0.000044 -1.7 0.082 -0.000167 -0.000010 

Speed (km hr-1) 0.029 0.00152 19 0.000 0.026 0.032 
Manuf-Japan 0.000 0.000     Manuf-GM 0.55 0.15 3.7 0.000 0.26 0.85 
Manuf-Ford 0.25 0.12 2.0 0.042 0.0085 0.48 
Manuf-other -0.051 0.20 -0.25 0.80 -0.45 0.34 

 
 

 
Figure 2.3: Model-predicted AER increase with age and speed for median age study 
vehicle. 
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Figure 2.4 below shows the model predictions versus actual measurements, and the 
normality of the residuals. In addition, the test results, when grouped by source of 
vehicle (ARB, rental or volunteer), did not show any difference in the pattern of 
residuals. 

 
 
Figure 2.4: Model predictions versus actual measurements, and the normality of the 
residuals. Each data point represents a measured AER used to populate the predictive 
model. 

 
As a test of our experimentally-derived and modeled results against other studies, our 
Equation 5 was used to predict the AER of the vehicles tested in the study by Knibbs et 
al. (1), the largest AER study conducted before the present study. Our study model 
slightly under-predicted the AERs measure by Knibbs et al. (1), at low AERs and slightly 
over-predicted the measured AERs at high AERs, but overall agreement was good, 
considering that Knibbs et al. (1) conducted their study in Australia with a sample of 
vehicles selected to span a range of ages rather than be representative of the 
Australian fleet. The results are shown in Figure 2.5. The R2 value of 0.83 indicates that 
our model performed consistently across the vehicles tested by Knibbs et al. (1).  
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Figure 2.5:. Comparison of model predictions and results from Knibbs et al., 2009. 

 

2.3 SUMMARY AND CONCLUSIONS 
For a typical car measured in this study under closed-window and recirculation air 
conditions, the model-predicted AER is in the range where significant particle number 
losses would be expected to occur, although this depends somewhat on the size 
distribution of the aerosol, with fresher aerosols expected to show higher deposition 
rates. For example, Figure 2.3 shows that for the median age study vehicle, the speed 
range from 32 to 97 km hr-1 would cause AERs to range from about 4 to 9 hr-1, 
respectively. Measurements of particle number attenuation in these vehicles (see 
Chapter 3) show that this air exchange rate typically produces 75 to 85% particle 
number reductions at steady state. Furthermore, this study measured AERs ranging 
from only 2 or 3 hr-1 at zero or low speeds for newer, tight cars to above 50 hr-1 for older 
cars at higher speeds. This range of AER would produce particle number reductions 
that vary from nearly 0 to nearly 100%. Therefore, AER is a key factor in determining 
particle number exposure inside vehicles and should be factored into any exposure 
assessment that predicts in-vehicle particulate matter (PM) exposure.  
 
In summary, the in-vehicle microenvironment is an important route of exposure to traffic-
related pollutants, particularly ultrafine particles (UFP, Dp < 0.1µm). However, significant 
particle losses can occur in vehicles under conditions of low air exchange rate (AER) 
when windows are closed and air is recirculating, such as during air conditioning. 
Despite the importance of AER in affecting in-vehicle exposures, few studies have 
characterized AER, and of those, all have tested a small number of cars. One reason 
for this is the difficulty in measuring AER with tracer gases such as SF6, the most 
common method. We demonstrated that using vehicle occupants as a source of CO2 
allows an accurate yet simple measure of AER. AER was calculated for three speeds 
each for 59 vehicles representative of California’s fleet, the first time a large and 
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representative sample of vehicles have been tested for AER. This sample was sufficient 
to allow the development of robust predictive models that explained 70% of the variation 
in the observed AERs, from <2 hr-1 to >50 hr-1. AER appeared to be primarily driven by 
speed, along with vehicle age and mileage, and to a lesser extent by manufacturer. 
These results will therefore be useful in future exposure or epidemiological studies that 
include commuting and other in-vehicle exposures to ultrafine PM and other air 
pollutants, since the predictive variables are readily obtainable through questionnaires.  
 

Accurate assessment of risk posed by ultrafine exposure will depend on the ability to 
characterize exposure during microenvironments like in-vehicle where peak and 
disproportionate exposure occurs frequently for large sections of the population. To this 
end, the insights gained on AER in a vehicle will be used to characterize the in-vehicle 
environment in the following Chapters 2 and 5 (based on Task 2). Since AER is 
responsible for the influx of pollutants into the vehicles, the in-vehicle concentrations will 
be highly dependent on AER.  

Furthermore, in enclosed environments like the in-vehicle microenvironment, exposure 
concentration does not always equal the ambient concentration. Pollutant 
concentrations, especially for particulate species like ultrafine particles (UFP, 
aerodynamic diameter less than 100 nm) are frequently lower inside vehicles (at 
multiple ventilation settings) than on roadways because pollutants are often lost during 
and post infiltration (1). However, they may still exceed ambient concentrations by 
manifolds (6). Prior to this work, some studies (11,17) have reported in-vehicle UFP 
concentrations but results cannot be generalized. No study was identified that can 
systemically quantify the role of roadway concentration variation and vehicle 
characteristics on in-vehicle exposure concentration.  

It is important to identify the most influential parameters and their relative impact in 
order to design and accurately interpret epidemiological studies. For example frequently 
at recirculation ventilation mode, inside concentrations is half of (or even lower than) 
that observed at outside air intake ventilation mode. A two-fold difference in roadway 
concentration between peak and off-peak traffic hours may be of no consequence for 
exposure assessment if vehicle is driven in recirculation mode when roadway 
concentrations are higher. With information of ventilation mode lacking, it will be 
impossible to draw correct conclusions on in-vehicle concentrations and associate them 
with any health end points in an epidemiological study.  

The next Chapter will examine the influence of various vehicle and driving related 
factors that influence in-vehicle concentration.
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3. CHAPTER THREE: FACTORS THAT DETERMINE ULTRAFINE PARTICLE 
EXPOSURE IN VEHICLES 

 
(based on Task 2. Examine the impact of important influential factors that 
contribute to in-cabin pollutant concentrations.) 
 
Note: Chapter Two discussed how air exchange rate (AER) varies from vehicle to 
vehicle and by speed, and how AER is the dominant factor in affecting how a given 
on-road pollutant concentration translates to different in-vehicle concentrations. 
Chapter Three goes on to explore other factors that can also affect the relationship 
between on-road concentrations and in-vehicle concentrations, using ultrafine 
particle (UFP) number concentrations as the primary example. UFP concentrations 
have the widest range of in-vehicle losses during typical driving conditions. Other 
particulate pollutants are of larger size and have higher loss rates, but these rates 
are also a strong function of AER. 
 

3.0 INTRODUCTION 

The proximity of vehicles to relatively undiluted emissions from other vehicles on 
freeways and busy roadways leads to significantly elevated pollutant concentrations 
in vehicle cabins compared to other indoor environments. Thus, a disproportionate 
share of total personal exposure can occur while driving, especially for pollutants 
emitted mostly by vehicles, like ultrafine particles (particles smaller than 100 nm, 
UFP).  Fruin et al. (2007) calculated that 33-45% of UFP exposure occurs while 
driving in Los Angeles, taking other micro-environmental concentrations and time-
activity patterns into account, but ignoring in-vehicle particle losses. In suburban 
locations of less traffic, Wallace and Ott (2011) estimated a 17% contribution of in-
vehicle microenvironment to total UFP exposure.  

Despite its importance as a route of exposure, the contribution of the in-transit 
vehicular microenvironment remains largely uncharacterized, in part due to the 
difficulty of characterizing the large differences in air exchange rate (AER), which 
drives particle influx rates and varies not only from vehicle to vehicle but also across 
different driving conditions. To better characterize AERs, Fruin et al. (2011) tested 59 
vehicles and reported that AER under recirculation ventilation conditions can be 
reliably predicted based on vehicle’s age, mileage, driving speed and manufacturer 
(r2 = 0.7). At outside air intake conditions, for the eight vehicles tested, they found 
AERs to be an order of magnitude higher than at recirculation settings. They also 
found that at the outside air ventilation setting, AER was driven by fan speed and not 
vehicle speed. In a similar but smaller study, Knibbs et al. (2009) reported AER 
values at higher fan settings during outside air conditions to be 73% higher than at 
lowest fan setting for six vehicles.  
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Particle influx and removal rates result from a complicated interaction among 
multiple factors, including AER, physical characteristics of the vehicle; particle size 
and in-cabin filter efficiency. Any accurate determination of the relative influence of 
each factor requires experiments where factors are systemically varied to observe 
effects under real driving (aerodynamic) conditions; else AERs are not realistic. 
Several recent studies (Gong et al., 2009; Xu and Zhu, 2009; Xu et al., 2011) 
addressing in-vehicle particle losses have not used realistic driving, in favor of 
artificial air movement, or have relied on measurements that are difficult to make 
outside a laboratory, such as filter efficiency tests. Furthermore, these studies have 
suffered from small sample sizes, ranging from only one to three vehicles (Gong et 
al., 2009; Xu and Zhu, 2009).   

Of the few studies that have used real driving conditions, Pui et al. (2008) and Qi et 
al. (2008) demonstrated a dramatic particle number concentration reduction in-cabin 
during recirculation ventilation settings in two vehicles, although AERs were not 
reported. Zhu et al. (2007) observed particle losses of about 85% at recirculation 
settings in three vehicles but AER was not measured and variable speeds during the 
tests would have resulted in variable AERs.  Zhu et al. (2007) was also the only 
study identified that made size-resolved particle concentration measurements but 
only up to 217 nm. Furthermore, they reported the fractional losses to be primarily 
dependent on particle size and vehicle characteristics. 

The most useful study from an exposure assessment perspective has been by 
Knibbs et al. (2010) who measured the inside-to-outside UFP concentration ratios in 
five vehicles and reported a high correlation between these ratios and AER (r2 = 
0.81).  They reported an average particle reduction of 0.69 during recirculation 
settings at low fan setting and 0.08 at outside air intake, but did not associate the 
losses with particle size or influence of specific removal mechanisms like cabin 
filtration.  

The goal of this study was to quantify the  effects on particle reduction rates due to 
changes in 1) ventilation setting; 2) measured AER; 3) fan setting; 4) filter condition; 
5) driving speed; and 6) easily-obtainable vehicle characteristics such as age and 
mileage (which affect AER); and to determine the relative importance of each of 
these variables.  It is the first study to combine measurements of AER and particle 
losses as a function of particle size.     

3.1 METHODS 

3.1.1 Vehicle Selection and Conditions Tested 

Six vehicles were selected such that AERs at recirculation ventilation settings 
spanned the inter-quartile range of AERs (4.5 - 13 h-1, median 7.4 h-1) measured in 
Fruin et al. (2011) and Hudda et al. (2012). Two vehicles (a 1999 Ford Contour and 
2001 Ford Escort) were more than 10 years old when tested, while four newer 
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vehicles (a 2010 Toyota Prius, 2010 Scion Xb, 2009 Toyota Matrix and 2009 Honda 
Civic) were 3-14 months old. All six vehicles were evaluated at both recirculation 
(RC) and outside air intake (OA) ventilation conditions. At each ventilation condition, 
experiments were conducted in both stationary and mobile mode at both medium 
and high fan speed settings. 

At RC setting, a total of 42 conditions were evaluated. Experiments measuring 
particle losses and AER were conducted on six vehicles at seven AERs each 
(resulting from a combination of ventilation fan setting and driving speed). At OA 
settings, a total of 34 combinations of vehicle/ speed/ fan strength were evaluated. 
However, because it has been previously demonstrated that fan setting and not 
vehicle speed determines AER at OA ventilation settings (Fruin et al., 2011), 
simultaneous particle loss and AER measurements were conducted for a subset of 
conditions (10 out of 34), i.e., in stationary vehicles at various fan settings. Particle 
loss measurements in moving vehicles were assumed to have the similar AER for a 
given fan speed. Air conditioning was kept on during all experiments, except for 
those at which the fan was off (6 out of total 76 conditions evaluated). Relevant 
vehicle characteristics are summarized in the following Table 3.1.  

 
Table 3.1: List of vehicles tested.  

                                                                                                                                                                                                                                                                        

3.1.2 Particle Concentration Measurements  

Particle number concentration measurements were made using a condensation 
particle counter (CPC, TSI Inc. Model 3007, size range 10 nm to 1000 nm) and 
number concentration measurements by size using a Scanning Mobility Particle 
Sizer (SMPS,TSI Inc. Differential Mobility Analyzer Model 3080 and Model 3022a 
CPC). The measured mobility diameter (Dp) range was 14-750 nm. However, data 
are presented only for the 14-400 nm range because above 400 nm, relatively few 
particles were counted and the resulting concentrations had large uncertainties. 

Vehicle Model Mileage In-Cabin Filter Vehicle Age  
(Years) 

Ford Contour            1999 115990 Yes 10 

Ford Escort                2001 127280 Yes 10 

Toyota Prius              2010 3210 Yes <1 (3 months) 

Toyota Matrix           2009 26125 Yes >1 (16 months 

Toyota Scion Xb        2010 24068 Yes <1 (11 months) 

Honda Civic               2009 22000 Yes >1 (14 months) 
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Furthermore, since roadway particles between 14-25 nm are volatile, concentrations 
in this size range are exceptionally variable in on-road environments. Reported 
results for this size range should be interpreted with caution.  

Experiments were conducted at 0, 20 and 35 miles h-1, with speed recorded each 
second by a Garmin GPSMAP unit 76CSC.  Experiments at 20 and 35 miles h-1 
were conducted while driving at constant speed around the Rose Bowl Stadium in 
Pasadena CA, a three mile long loop with little vehicular traffic. Freeway speeds 
were not evaluated in this study due to the rapidly changing traffic and particle 
number and size distributions typically present on Los Angeles freeways.  

All in-vehicle measurements were made with windows fully closed. Outside vehicle 
concentrations were assumed to be equal to roadway concentrations, and were 
measured for 10-20 minutes before and after the in-vehicle measurement period, 
with windows fully open to allow the outside air to pass freely through the vehicle. 
Earlier in the study, it was verified that open window conditions allow accurate 
measurement of roadway particle size distributions and number concentrations by 
comparing simultaneous measurements with two CPCs, one measuring 
concentrations with a 1 m long inlet sampling air right outside the vehicle, and the 
other CPC, sampling  in the middle of the backseat of the vehicle. Ambient particle 
number concentrations and size distributions were also measured using a stationary 
monitor at a position central to the run loop.  All ambient concentrations were stable 
to within 10%, before, during, and after a run.   

Inside-to-outside particle concentration ratio (I/O) was calculated for all 
measurements, to provide a measure that reflects particle removal indoors. I/O ratio 
was calculated after concentrations were stable in the vehicle over 15 minutes or 
more of sampling. I/O ratios reported for specific size ranges are equivalent to the 
average of mobility-diameter-specific I/O ratios within the range.  

3.1.3 Air Exchange Rate Measurements 

During both mobile and stationary conditions, air exchange occurs between the 
vehicle cabin and the outside environment through leaks in the body of the vehicle 
(door seals, window cracks, etc.) and through the ventilation system, when it is set to 
draw outside air into the cabin. This air exchange continually replenishes the vehicle 
cabin with pollutants/particles from the outside environment, hence is an essential 
measurement in any study of in-vehicle exposure.  

AERs were determined at RC conditions using CO2 as a tracer gas and two 
occupants as a stable source of CO2 generation (described in detail in Section 2.1.3-
2.1.6, Chapter 2). Build-up rates of CO2 concentration were used to determine the 
CO2 rate of emission, and equilibrium CO2 concentrations at fixed speeds then 
allowed calculating the AER at that speed. Under OA conditions, AERs are much 
higher, requiring higher starting CO2 concentrations that cannot be readily reached 
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by occupants.  As it was observed that speed plays an insignificant role in affecting 
AER compared to fan setting at OA conditions, only stationary tests were necessary 
to characterize AER, and CO2 from a pressurized cylinder was used to produce the 
necessary high starting concentrations (described in detail in Section 2.2.7, Chapter 
2).  Table 3.2 and 3.3 list the AERs for the vehicles at various conditions tested. 

 
Table 3.2: AER rates (h-1) at recirculation setting for the vehicles tested.  

Speed 

(miles 
h-1) 

Fan Ford 
Contour 

Ford 
Escort 

Toyota 
Prius 

Toyota 

Scion 
xB 

Toyota 
Matrix 

Honda 
Civic 

0 No 2.1 2.20 0.53 0.27 1.70 1.15 

0 Medium 3.1 3.50 0.83 0.53 2.40 3.00 

0 Full 6.2 5.40 1.50 1.40 3.20 4.20 

20 Medium 11.2 8.10 3.00 3.50 4.10 5.50 

20 Full 14.1 9.50 3.70 4.80 4.70 6.30 

35 Medium 16.0 11.5 3.70 4.50 5.10 7.30 

35 Full 19.0 13.5 4.30 5.70 6.30 8.80 
 

Table 3.3: AER rates (h-1) at outside air intake setting for the vehicles tested. 1

Ford Contour 

 

 

Ford Escort Toyota Scion xB 

Fan AER Fan AER Fan AER 

1/4 36.0 1/3 51.0 1/4 20.0 

2/4* 65.0 2/3* 64.0 2/4* 35.0 

3/4 94.0 3/3§ 83.0 3/4 50.0 

4/4§ 117.0   4/4§ 75.0 

 

 

                                            

 

 
1 *Medium fan setting, §Full fan setting 
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Table 3.4 continued 

Honda Civic Toyota Prius Toyota Matrix 

Fan AER Fan AER Fan AER 

2/12 57.0 1/7 23.0 1/4 20.0 

4/12 72.0 2/7 36.0 2/4* 35.0 

6/12* 93.0 3/7 48.0 3/4 - 

8/12 112.0 4/7* 59.0 4/4§ 71.0 

10/12 125.0 5/7 69.0   

12/12§ 141.0 6/7 84.0   

  7/7§ 97.0   
 

3.2 RESULTS AND DISCUSSION 

3.2.1 Effect of Air Exchange Rate on I/O Ratios 

 

Figure 3.1: I/O ratio dependence on AER for 25-400 nm particles under re-circulation (RC) and 
outside air (OA) ventilation setting. 

At RC ventilation conditions, the 42 AERs across the six vehicles tested varied from 
less than 1 to 19 h-1. At OA setting, measured AERs varied from 20 to 145 h-1.  Any 
significant increase in AER resulted in an increase in particle influx rate and 
increased I/O ratios. Figure 3.1 presents I/O ratio results under both ventilation 



49 

conditions, and illustrates the strong dependence of I/O ratio on AER, which is 
exhibited most distinctively in the difference between the I/O ratios at RC and OA 
ventilation settings. The decrease in I/O ratio with increasing AER was less dramatic 
at OA conditions compared to RC conditions. Across the size range (25-400 nm) an 
increase in AER elevated I/O ratio, but the effect was strongest for particles above 
200 nm.  

The only other study to report both I/O ratio and AER, Knibbs et al. (2010), reported 
a high correlation between I/O ratio for UFP and AERs (r2 = 0.81). In the present 
study, at RC the r2 between I/O ratio (using a CPC 3007, the same instrument used 
by Knibbs et al., 2010)  and AER was 0.80, indicating that AER is the most 
significant determinant of I/O ratio at RC ventilation conditions.  The average I/O 
ratio under RC conditions was 0.17 ± 0.13. In contrast, at OA conditions, the I/O 
ratios averaged 0.67 ± 0.10. The average r2 between I/O ratios and AER under OA 
conditions was 0.75 (r2 values for all but one vehicle were 0.9 or above). On average 
for the six vehicles tested, a switch in ventilation condition from RC to OA increased 
I/O ratio by nearly a factor of four. 

3.2.2 Effect of Vehicle Speed and Age on AER and I/O Ratios  

Under RC conditions, an increase in speed increased AER and I/O ratios. On 
average, a 10 miles h-1 increase in speed resulted in 1.65 h-1 increase in AER and a 
0.035 increase in I/O ratio. Speed affected AER more for older vehicles (+2.4 h-1/10 
miles h-1) compared to the newer vehicles (+1.2 h-1/10 miles h-1), similar to the 
results reported by Knibbs et al. (2009). As a result, I/O ratio, which depends 
strongly on AER, increased with speed at twice the rate for older vehicles (-0.05 /10 
miles h-1, Pearson r2 = 0.78) than for newer vehicles (-0.025 /10 miles h-1, Pearson r2 
= 0.20).  

Despite these differences by vehicle age, an overall strong correlation was observed 
between AER and speed as well as I/O ratios and speed, as well as AER. In Fruin et 
al. (2011) an r2 equivalent of 0.92 was calculated between AER and speed for a 
much larger fleet of vehicles and for speeds up to 70 miles h-1 using a Generalized 
Estimating Equations (GEE) (Liang et al., 1986).  (GEE techniques account for 
correlated measurements within a vehicle; e.g, a tight vehicle with lower AER will 
consistently have lower I/O ratios across each speed compared to a leakier vehicle 
with higher AER). Among the six vehicle data, using GEE technique, 82% of the 
variation in AER could be accounted for by speed (p value = 2.5 x 10-9). 
Furthermore, nearly all variation (r2 = 0.98, p-value = 6.9 X 10-7) in I/O ratios at RC 
setting was explained by changes in AER. Given the consistent and strong 
correlations between AER and speed (Knibbs et al., 2009, Fruin et al, 2011; this 
study) and between I/O ratios and AER at RC setting (Knibbs et al., 2009, this 
study), these results can be expected to extrapolate well to the higher AERs of 
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vehicles travelling at higher freeway speeds (65-70 miles h-1) from the speeds tested 
in this study, i.e., 35 miles h-1 and less.  

In contrast, under OA conditions, no definitive association between speed and I/O 
ratios could be discerned for the six vehicles tested. Since AER at OA is driven by 
mechanical ventilation rather than speed-driven pressure differences outside the 
vehicle shell, this lack of association is not surprising. Knibbs et al. (2009) have 
previously shown that at OA conditions, for the newer four of total six vehicles tested, 
the association between AER and speed was weak (linear regression on all 4 
vehicles: AER = 0.15 * Speed [miles h-1] + 51, r2 = 0.06). For the oldest two (10 and 
19 year old) of the total six vehicles tested, the relationship was stronger (AER = 
0.59 * Speed [miles h-1] + 52, r2 = 0.52).This suggests that for older vehicles, the 
AER at OA may increase at speeds higher than those tested in this study, which 
should elevate I/O ratios. However, for the two oldest vehicles in this study (10 years 
of age), any increase in AER with speeds between 1 to 35 miles h-1 did not cause a 
noticeable change in I/O ratios.  

 

 
Figure 3.2: Agreement between measured I/O during variable speed driving and 
regression-predicted I/O. 

Most real-world driving involves constantly changing speeds due to traffic conditions 
and widely varying roadway particle number concentrations. To illustrate how well 
the steady speed/AER and relatively stable roadway concentration condition results 
apply to such changing speed and concentration conditions, measurements were 
made during two 15-minute duration trips on a freeway (I-110) and an arterial road 
(Figueroa Street, downtown Los Angeles) in a Toyota Matrix 2009. No attempt was 
made to maintain steady speeds during these runs, and average speed was 55 miles 
h-1 and 27 miles h-1 on the freeway and arterial road, respectively. The ventilation 
setting was set to OA, leading to moderately high AER (35 h-1) that would allow rapid 
influx of roadway concentration into the vehicle cabin and reflect the unsteady 
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roadway environment, as shown in Figure 3.2. It should be noted that under low AER 
conditions, in cabin concentrations are fairly steady due to limited influx of particles. 
The average AF calculated from average in-cabin and roadway particle number 
concentrations agreed almost perfectly with the I/O ratios predicted from the I/O ratio 
versus speed regression equation based on measurements at steady speeds.  

 

3.2.3 Effect of Particle Size on I/O Ratios 

 
Figure 3.3: Size range specific I/O ratios at three speeds and two ventilation 
conditions tested. The dashed lines join values from the same vehicle. 

For a given ventilation and speed combination, particle size-specific I/O ratios were 
found to be similar across size for newer vehicles and only moderately different 
across size for older vehicles. At RC, the I/O ratios for 100-200 and 200-400 nm 
were respectively 0.04 and 0.07 higher than the average I/O ratio (0.16 ± 0.09) for 
ultrafine range. At OA, the differences in size specific I/O ratios were more 
accentuated than at RC. The I/O ratios for both 100-200 and 200-400 nm were 0.06 
higher than the average I/O ratio (0.75 ± 0.12) for ultrafine range. As can be 
observed in Figure 3.3, the difference in I/O ratios across size was much less than 
the difference in I/O ratios across ventilation conditions. 

3.2.4 Effect of Ventilation Fan Setting on I/O Ratios 

Figure 3.4 shows that increasing the ventilation fan setting from medium to full 
elevates the I/O ratios at both RC and OA, but this reduction was far more 
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pronounced at OA than at RC.  Under RC conditions, the attenuation reduction 
inside the cabin (thus the elevated I/O ratios) is somewhat counter-intuitive, since 
increasing fan setting might be thought to increase particle removal via greater rates 
of airflow through the in-cabin filter, when present. Also, the deposition of particles 
on cabin surfaces increases with increase in in-cabin air velocity (Gong et al., 2009). 
However, fan setting has been previously demonstrated to increase AER for older 
vehicles (Fruin et al., 2011; Knibbs et al., 2009), likely due to leaks into the 
ventilation system, and filtration efficiency decreases at greater air flow velocities 
associated with higher fan settings as well (Qi et al., 2008). Apparently, these mostly 
offset the particle reductions expected due to greater volumes of air being filtered at 
high fan settings under RC conditions. However, higher fan settings resulted in 
increased losses for particles smaller than 50 nm, perhaps due to the increased 
turbulence in the ventilation system at higher fan settings.  

 

Figure 3.4: Comparison of I/O ratios at different speeds and fan settings. 

At OA, an increase in fan speed settings strongly increased AER. The I/O ratios at 
full fan setting under OA conditions were as much as double that at medium fan 
setting and AERs at full fan setting were about 65% higher than at medium fan. 
Thus, ventilation fan setting is a key predictor of I/O ratios under OA ventilation 
conditions.  

3.2.5 Effect of Cabin Air Filter and Loading on I/O Ratios 

In order to determine the effect of cabin filters on particle removal and resultant I/O 
ratios, measurements were conducted under several filter conditions: no filter, used 
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(loaded), and new, at both OA and RC setting in three stationary vehicles. The Ford 
Contour’s in-use filter had been operational for 36 months at the time of testing and 
was heavily loaded. The Honda Civic’s filter had been in operation for ~14 months at 
the time of testing and was moderately loaded, and the Prius’s filter had been in use 
for ~3 months, and was lightly loaded. All new filters were standard replacement 
cabin air filters bought from an auto parts store (all either brand STP or Purolator). 

The presence or absence of the filter, or its loading, was observed to have only a 
small effect on I/O ratios. Used, loaded filters provided only moderately lower or 
comparable I/O ratios to a new filter. The results in Figure 3.5 for a Toyota Prius are 
typical and show that overall particle loss is not significantly affected by the presence 
of a new filter or even a loaded filter at OA settings.  Without any filter, I/O ratio was 
only moderately higher (maximum difference observed was 0.1).  

 
Figure 3.5: I/O ratios by filter condition or absence under OA conditions in a 2010 
Toyota Prius. 

Furthermore, the effect of several different filter loadings as characterized by in-
vehicle pressure drop for the same vehicle was also investigated under OA 
ventilation conditions. Increased loading and resulting reduced pore size and flow 
rates, were found to decrease I/O ratios for UFP, but no significant changes were 
observed for particles exceeding 100 nm in size. Four loaded filters and a brand new 
filter were placed into Honda Civic 2010 model and tested at OA setting. 
Experiments were conducted in a stationary vehicle. Highest pressure drop (plotted 
as a subset in Figure 3.6) was observed for the heaviest loaded filter L4, while 
values for moderately loaded filters L1, L2 and L3 were comparable (Figure 3.6). 
Under OA setting, the I/O ratios decreased with filter loading for UFP particles (>100 
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nm) from 0.36 (± 0.05) for new filter to 0.36 (± 0.04), 0.42 (± 0.05), 0.49 (± 0.05) and 
0.54 (± 0.05) for L1, L2, L3 and L4, respectively.  A large increase in filter loading 
resulted in significantly better filtration efficiency for nano-particles (<50 nm), as seen 
in the abrupt change of I/O values values for L3 and L4 in Figure 3.6.   

 
Figure 3.6: Effect of filter loading on particle removal for filters tested in Honda Civic 
vehicle under OA conditions. 

This implies that the particle removal due to filtration is a small fraction of the total 
particle attenuation, and that most of the attenuation is probably due to turbulent 
surface deposition in the ventilation system or vehicle surface itself.  Pui et al. (2008) 
reported 19% particle loss in a Toyota Camry in the absence of filter and suggested 
intrinsic losses in the ventilation system as an attenuation mechanism. In our tests 
23, 40 and 40% particle losses were observed for the Honda Civic, Toyota Prius and 
Ford Contour with no filter, respectively. I/O ratios based on total particle number 
concentration are reported in Table 3.4 for three vehicles by filter presence and 
condition. Furthermore under RC settings, the I/O ratios in the absence of a filter 
were on average only 5% higher than with a filter in place.  Although the presence 
and condition of the filter were insignificant to I/O ratio, it somewhat affected the time 
that the system requires to achieve the maximum attainable attenuation and stable 
I/O ratios. Similar increases in the time required to reach maximum attenuation have 
been reported by Pui et al. (2008).  
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Figure 3.7: Effect of presence of filter in RC ventilation mode. C0 is the concentration 
at the beginning of experiment, i.e., at time t = 0 and is equal to the ambient 
concentration. 

Table 3.1: I/O ratios for three filter scenarios. 

 Recirculation Setting Outside Air Setting 

 No Filter New 
Filter 

In-use 
Filter 

No Filter New 
Filter 

In-use 
Filter 

Honda Civic 0.08 ± 
0.02 

0.04 ± 
0.01 

0.03 ± 
0.01 

0.77 ± 
0.08 

0.76 ± 
0.09 

0.67 ± 
0.07 

Ford Contour 0.11 ± 
0.02 

0.07 ± 
0.01 

0.06 ± 
0.01 

0.60 ± 
0.05 

0.64 ± 
0.08 

0.53 ± 
0.01 

Toyota Prius - 
1 

0.05 
±0.01 

0.03 ± 
0.01 

0.02 ± 
0.01 

0.60 ± 
0.08  

 

0.57 ± 
0.06 

  

0.52 ± 
0.04  

 

Toyota Prius – 
2* 

   (0.51 ± 
0.06) 

(0.47 
±0.07) 

(0.41 ± 
0.04) 

* Measurements made in two Prius 2010 (vehicle 1 had ~3,200 miles and vehicle 2 had 
~11,000 miles) to check for the effects of vehicle make. 

 

3.3 IMPLICATIONS FOR IN-VEHICLE PARTICLE MODELS 

Some recent studies (Xu and Zhu, 2009; Xu et al., 2011) attribute all particle losses 
in the ventilation system to filtration and incorporate them into models by using filter 
efficiency as the removal mechanism. If the presence of cabin filters actually plays a 
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minor role in the attenuation of particles inside the vehicles, as observed in our 
measurements, a much larger component of attenuation occurs due to losses onto 
cabin and ventilation system surfaces. These different loss mechanisms should 
therefore be differentiated in models since they likely differ under different ventilation 
and driving conditions. Furthermore, any quantitative modeling should account for 
the intrusion flow of outside air into the ventilation system at RC. Knibbs et al. (2009; 
2010) and Fruin et al. (2011) report that at RC, increases in fan setting increase the 
AER. They also reported that this increase seems to increase with age of the vehicle 
and could vary considerably by vehicle. Less than 15% increase on average was 
reported by Fruin et al. (2011) when fan setting was changed from medium to full, 
but this became as large as 40% for the older vehicles.  

 

3.4 IMPLICATIONS FOR EXPOSURE ASSESSMENT 

Predicting particle exposure inside vehicles requires determining ventilation setting 
first and foremost (i.e., OA or RC), due to its large impact on AER. Under OA 
conditions, fan setting is the most dominant variable, and I/O ratio was approximately 
0.6 and fairly independent of speed. Under RC conditions, I/O ratio has a large range 
and varies from 0.5 to zero, depending on AER, which can be predicted by speed 
and vehicle age and mileage (Fruin et al., 2011).  Under open window conditions, I/O 
ratios approach one, i.e., in-cabin concentrations frequently equal roadway 
concentration.   

Difficult to obtain information, such as state of in-cabin filter loading, does not appear 
to be a crucial factor in assessing I/O ratios and the resulting in-vehicle particle 
exposures.  It also does not appear that changes in on-road size distribution have a 
large impact on I/O ratios. Figure 3.8 exhibits the I/O ratio differences for four widely 
different hypothetical size distributions having number concentration mode less than 
25 nm (fresh vehicle exhaust plume), 25-50 nm (on-road diluted plumes), 50-100 nm 
(aged vehicle emissions) and 100-200 nm (aged aerosol observed as urban 
background). The largest difference in I/O ratio occurs between aged and fresh 
aerosol, changing the overall I/O ratio by no more than 0.1 at OA and less than 0.05 
at RC. Considering that on-road particle size number concentrations are dominated 
by ultrafine particles (Marawska  et al., 1998), I/O ratio measurements based only on 
total number concentration (e.g., a total particle count from CPC) would be expected 
to (and were observed to) produce I/O ratio measurements nearly identical to an 
average I/O ratio resulting from a number-weighted average I/O ratio across multiple 
size ranges. Therefore, all of the variables needed to estimate I/O ratio within 10% or 
less can be obtained through questionnaires given to vehicle owners. 
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Figure 3.1: Impact of change in particle size distribution on number concentration 
weighed I/O ratios.

Figure 3.2: Progression of particle loss within vehicles at recirculation and outside air 
intake condition. The subscripts in the legend indicate the experiment time during 
which the scan was made. The measured AER at 35 miles h-1, medium fan, 
recirculation mode was 7.3 h-1 and at 0 miles h-1, medium fan outside air intake mode 
was 93 h-1.

Lastly, for the case of short duration trips, the equilibration conditions reported in 
this study for I/O ratio may not be reached. The particle attenuation reported here 
was attained typically within 5 to 10 minutes at OA conditions and 15 to 20 minutes 
at RC conditions, as shown in Figure 3.9. The benefit derived from higher reduction 
in particle exposure with the use of RC setting may be reduced if short trips are 
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taken repeatedly. The dynamic nature of particle attenuation should be considered in 
assessing short trip exposures. 

 

3.5 SUMMARY AND CONCLUSIONS  

In-vehicle concentrations result from the interaction of on-road concentrations with 
vehicle characteristics that can reduce or remove the pollutants, depending on the 
pollutant and the vehicle AER. The actual removal rates are due to a complicated 
interplay between a vehicle’s physical characteristics, ventilation condition, particle 
size, and changes in air exchange rate (AER) (which increases with speed and 
vehicle age and increases the particle influx rate). Therefore, accurate determination 
of losses requires on-road testing under realistic aerodynamic conditions.   

For task two, we focused on ultrafine particle (UFP) number concentrations, the 
particle pollutant with the highest and most widely-varying loss rates.  Six vehicles 
were tested at different driving speeds, fan settings, cabin filter loadings, and 
ventilation conditions (outside air or recirculation). During outside air conditions, the 
fraction of particles removed averaged 0.33 ± 0.10 (SD). Fraction removed did not 
vary with vehicle speed but decreased at the higher ventilation flow rates of higher 
fan settings. During recirculation conditions, AER was much lower and removal 
fraction higher, once in-vehicle concentrations were stable (on average within about 
10-20 minutes).  Removal fraction averaged 0.83 ± 0.13 and was highly correlated 
with and a strong function of AER. Under both ventilation condition types, particle 
removal was primarily due to losses unrelated to filtration.  Filter condition, or even 
the presence of a filter, played a minor role in particle fraction removed and most of 
the losses occur due to losses on to cabin or ventilation system surfaces.   

The results from this chapter demonstrated that correct assignment of exposure 
concentration inside vehicles requires an additional parameter, inside-to-outside ratio 
(I/O), which can accurately modify roadway concentrations to reflect the combined 
effects of multiple mechanisms that either limit the pollutant penetration inside 
vehicles or cause loss therein. For a given vehicle, the I/O ratio depends on 
ventilation setting preferences and driving speed. Furthermore, the inter-vehicle 
difference in I/O, due to age is also significant. With the knowledge of the important 
parameters that influence I/O, more vehicles were tested in this study targeting all 
the necessary ventilation settings so the variation in I/O (due to ventilation settings) 
could be captured.  The results from this Chapter were helpful in assessing data 
sufficiency and performing tests that spanned the range of I/O ratios expected under 
different conditions.  This is because it is important to capture the full spread of I/O 
ratios to develop predictive models. Results from more vehicles and predictive 
models follow in Chapter 5, Part I.  The next Chapter 4 presents results of on-road 
sampling that were used to develop models in the following Chapter 5, Part II. 
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4. CHAPTER FOUR: FREEWAY EMISSION RATES AND VEHICLE EMISSION 
FACTORS OF AIR POLLUTANTS IN LOS ANGELES  
(based on Task 3. Estimate emission factors of PM pollutant concentrations 
based on roadway and urban background site measurements and CO2-based 
dilution adjustments.) 
Note: This Chapter presents the results from on-road sampling. This data was used 
to guide the development of models in the following Chapter 5, Part II.  

4.0 INTRODUCTION 

Mobile emissions are the single largest source of nitrogen oxides (NOx) and carbon 
monoxide (CO) emissions, and a significant source of fine particulate matter (PM2.5, 
Dp < 2.5 µm) emissions in Southern California (1) and the United States (2). 
According to the latest national emission inventory for 2011 (2), on-road emissions 
from mobile sources are responsible for 76% of CO and 30% of NOx emissions. In 
California, passenger cars and light/medium/heavy duty trucks account for 80% of 
vehicle miles travelled (VMT) and 70%, 39% and 43%, respectively, of the total 
emissions inventory for CO, NOx and PM2.5 (3).  
 
Vehicle emissions cause not only air quality problems but also adverse health 
effects. In urban ambient air NO2, and more typically NOx, serve as markers of a 
plethora of toxic air pollutants from fossil fuel combustion sources. Even at low 
levels, NO2 has been associated with both cardiovascular and respiratory morbidity 
and mortality (4-5).  Exposure to PM2.5 has been linked to pulmonary and 
cardiovascular disease (6), and PM2.5 from diesel combustion has been shown to 
increase lung cancer risk (7).  Furthermore, PM2.5 emissions from diesel truck 
engines are dominated by black carbon (BC) (8-9), which appears to be a better 
measure of traffic-related morbidity and mortality than PM2.5 (10). Further, vehicular 
emissions emit most of the particles in ultrafine size range (UFP, dp < 100 nm) that 
not only have high oxidative potential (owing to their high content of redox active 
organics and metals, but are also capable of penetrating deep into the lungs and 
crossing epithelial layers, thereby potentially causing systemic effects (11-13).  Near-
roadway exposures to vehicular emissions have been associated with adverse 
health effects by numerous studies (4-5,14).  

 Monitoring of emissions from mobile sources is not only important from a standpoint 
of assessing the public health risk that they pose, but also for evaluating the efficacy 
of regulatory measures and attainment of emission standards. Vehicle tailpipe and 
evaporative emissions have been the target of multiple regulations including fuel 
reformulation, state-controlled inspection and maintenance programs, and control-
technology requirements. Benefits of improved control technologies have often been 
apparent; for example, NOx emissions from light-duty vehicles (LDV) have been 
substantially reduced through the use of three-way catalytic convertors (15). 
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In recent years, and as a consequence of improvements in LDV emissions control, 
heavy-duty diesel trucks (HDDT) have been reported as disproportionate 
contributors to on-road emissions, taking their low engine population and activity 
rates into consideration (15).  In Los Angeles County, on-road emissions from 
passenger cars, which are responsible for 53% of VMT, contribute only 15% to NOx 
and 30% to PM2.5 emissions from mobile sources. Light- to heavy-duty trucks, though 
responsible for only 28% of VMT, emit 25 % of NOx and 18% of PM2.5 (3). 
Furthermore, previous studies (16-17) in Los Angeles have demonstrated a strong 
link between on road and near-roadway levels of pollutants, like BC and UFP, and 
truck density. However, effects of recent initiatives and regulations for HD trucks in 
California will erode the dominance of HD contributions to NOx and BC as the fleet 
turns over. For example, lower diesel PM mass regulations are requiring diesel 
particulate filter (DPF) controls, that dramatically reduce PM mass and BC 
emissions, but not always with commensurate reductions in particle number that 
dominate UFP (18). Selective catalytic reduction measures to meet NOx standards 
are also proving effective (19-20).    

In addition to greatly exceeding per-mile emissions from gasoline vehicles, 
emissions from HDVs are often concentrated on certain truck routes. For example, 
goods movement to and from the Port of Los Angeles and Port of Long Beach 
results in high localized air pollution impacts (17).  As a result, port-related diesel-
engine activity has been the focus of recent regulations in Los Angeles, such as the 
San Pedro Bay Ports Clean Air Action Plan (21) (expected to eliminate more than 
47% of diesel particulate matter and more than 45% NOx from port-related sources 
by 2014. Additionally, the California Air Resources Board (CARB) implemented 
Drayage truck regulations and a ban on pre-1993 engines, with the expected benefit 
of accelerated fleet turn-over and 85% reduction in PM2.5 by 2014 (22). 

Recent studies (23-25) have demonstrated the benefits of using a mobile monitoring 
platform (MMP), a vehicle equipped with real time instrumentation to determine on-
road pollutant concentrations and emission factors during actual driving conditions. 
This study builds on those developments and uses an MMP to investigate real-world 
emissions factors on Los Angeles freeways. Measurements for gas and particulate 
phase pollutants were made during summer 2011 on several freeways. Fuel based 
emission factors and fractional contribution of diesel powered engines to total 
emissions was calculated. The goal of this study was to estimate freeways based 
emission rates based on vehicle emission factors and engine activity (quantified 
using vehicle miles traveled) per mile per hour of the freeway to investigate freeway-
to-freeway variability, owing to differences in HDV fractions and total vehicular 
activity on freeways. Despite a factor of two difference in HDV fractions between 
freeways, and up to a magnitude difference in HDV and LDV emission factors, total 
freeways emissions were found to be comparable underscoring the importance of 
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considering total vehicle activity (in terms of miles travelled) over just vehicle or HDV 
counts.  

 

4.1 METHODS 

4.1.1 Mobile Measurement Platform (MMP) and continuous measurement 
instruments  

A hybrid vehicle (2010 Honda Insight) was used as a mobile measurement platform. 
All the continuous instruments listed in Table 4.1 below drew air samples from a 
common sampling duct installed across the rear windows. The response time of the 
fastest instrument (Condensation Particle Counter Model 3007, (CPC), TSI Inc., MN, 
USA) to an on-road plume, including the residence time for the air in the sampling 
duct, was less than two seconds. The concentration time-series recoded by all other 
instruments were aligned with respect to the fastest instrument to adjust for the 
delayed response. Time-lag remained constant (to within a second) over the 
campaign due to fixed instrument response behavior and flow rates. Instruments 
were periodically calibrated and time was synced to be within 1 second with the 
Global Positioning System (GPS) device (Garmin GPSMAP 76CSC). Further, data 
quality assurance comprised regular flow and zero reading checks. MMP was driven 
in the central freeway lane, when possible, through this study.  

A limitation of the Dust Trak DRX (Model 8533, TSI, USA) was its potential lack of 
sensitivity to smaller particles, such as those found in diesel exhaust, which could 
decrease the accuracy of the measurements of emissions. Since the instruments 
were not calibrated to accurately reflect fresh emissions, its data may be used for 
quantitative inter-comparisons within this study. In this campaign, black carbon (BC) 
mass concentrations were determined by using an Aethelometer (Magee Scientific, 
Model AE51), which measures the optical attenuation (ATN) of a light beam 
transmitted through a sample collected on a filter.  At low filter loadings, there is a 
linear relationship between BC and ATN; however, as particles accumulate on the 
filter this linearity breaks down, and a correction (described in Wang et al. (24) was 
applied to obtain an accurate BC concentration. UFP concentration reported by CPC 
3007 was corrected using the method described in Westerdahl et al. (23) when 
levels exceed 105 particles cm-3.  
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Table 4.1: Instruments used in this study 

Instrument Parameter 
measured 

Instrument Flow 
Rate (lpm) 

Response 
Time (s) 

Resolution Detection Limit 

TSI portable CPC 
(butanol-based) 
model 3007 

UFP count, 
10 nm - 1 um 

0.8 1 1 
particle/cm^3 

10 nm, <0.01 
particles/cm^3 

TSI DustTrak 
DRX, model 8533 

PM2.5 mass 1.7 5 +/- 0.001 
mg/m^3 

0.001 - 100 
mg/m^3, 0.1 - 2.5 

um size range 

Magee Scientific 
Aethalometer AE 
51 

Black carbon 150 mL/min 60 0.001 µg 
BC/m3 

±0.1 µg BC/m3 

, 1 min avg., 150 
mL/min flow rat 

LI-COR model LI-
820 

CO2 1 <1 >4% of the 
reported  

value 

3.0 ppm 

2-B Technology 
Nodel 408 

NO 1 8 Greater of 3 
ppb or 3% of 
reading 

 

2-B Technology 
Nodel 401-410 

NOX 1 8 Higher of 1.5 
ppb or 2% of 
reading 

 

EcoChem PAH 
analyzer, model 
PAS 2000 

Particulate 
matter-phase 
PAH 

2 < 10 ~ 0.3 -1 g 
/m3 

 PAH per 
picoamp 

3 ng/m^3 

TSI Q-Trak Plus 
monitor, model 
7565 

CO, 
Temperature, 
humidity 

 20  1 ppm 

Garmin GPSMAP 
76CSx 

GPS location, 
speed 

N/A 1 3m  

4.1.2 Sampling Routes  

Emissions from motor vehicles were measured on five Los Angeles freeways – I-
110, I-405, I-710, CA-60 & CA-91 (See Figure 4.1). While freeway 110’s northern 
segment (110N) is closed to HDV, they are allowed on the southern segment (110S). 
These two segments of 110 have been discussed separately throughout this study. 
Based on California Department of Transportation (Caltrans) 2009 Annual Average 
Daily Traffic (AADT) and truck data (counts trucks 2-axle or higher), trucks constitute 
less than 1% of the total vehicle flow on 110 N and 5.0 ± 1.5 % on 110S segment 
(26). Freeway I-405 has a mixed-fleet but is mostly dominated by LDV (the Caltrans 
data based truck fraction was 3.8 ± 0.58 %). The other three freeways, I-710, CA-60, 
CA-91, have a relatively higher fraction of HDVs, i.e., 12 ± 5.7 %, 6.9 ± 1.6 % and 



65 

7.6 ± 1.1, respectively. Date and time of sampling, along with meteorological 
conditions during sampling period are listed in Table 4.2.  

  
Figure 4.1: Freeway segments where measurements were conducted (generated using 
Google Maps).  

 

4.1.3 Mathematical calculations and equations 

4.1.3.1 Emission Factor (EF)  

Fuel-based EFs were calculated for each freeway segment each day using carbon 
balance approach, shown in Equation 4.1. Pollutant emission was normalized by 
total carbon emissions on the freeway to compute emission factors in units of mass 
of pollutant emitted per unit mass of fuel burned. Carbon combustion products that 
were accounted were carbon dioxide (CO2), carbon monoxide (CO) and black 
carbon or soot (BC).  
 

Equation 4.1: Pollutant emission factor 

𝐸𝐹𝑃 = 103 � ∆[𝑃]
∆[𝐶𝑂2]+∆[𝐶𝑂]+∆[𝐵𝐶]

� × 𝑤𝑐  
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Table 4.2: Sampling days, hours and meteorological conditions 

 

where EFp is the emission factor (g emitted per kg fuel burnt) for pollutant P, Δ[P] is 
the increase in the concentration of pollutant P (g m-3, or #/m3 for ultrafine particle 
number concentration (PNC)) above the background concentration, Δ [CO2], Δ [CO] 
and Δ [BC] are the increases in the concentrations of carbon combustion products (g 
m-3). wc, the mass fraction of carbon in fuel was used as 0.85 for gasoline fuel and 
0.87 for diesel fuel (27).  Background values for use in Equation 4.1, were estimated 
as the 5th percentile of pollutant concentration observed on the freeway segment, 
while the median value was used as an estimate of elevated pollutant concentration 
due to vehicular emissions. Since the goal of this study was to estimate fleet average 
EFs, the use of median value allowed for excluding any bias (which would otherwise 
be present in averages) due to capture of specific high-emitting vehicle plumes.  

Date Hours
Temp 

(deg C)

Relative 
Humidity 

(%)

Wind 
Speed 
(m/s)

Wind 
Direction 
(degrees) Date Hours

Temp 
(deg C)

Relative 
Humidity 

(%)

Wind 
Speed 
(m/s)

Wind 
Direction 
(degrees)

710 (North) 710 (South)
17-May 10:00-11:00 15.6 56 1.8 76 17-May 09:00-10:00 13.9 87 2.2 79
19-May 10:00 13.9 86 0.9 296 19-May 09:00-10:00 14.4 81 1.3 275

1-Jun 20:00 13.9 71 3.1 261 1-Jun 20:00 13.9 71 3.1 261
2-Jun 08:00 20.0 51 1.3 353 2-Jun 07:00-08:00 18.9 56 1.3 186
3-Jun 13:00-15:00 23.1 46 4.0 201 3-Jun 12:00, 14:00 23.3 43 4.0 199
4-Jun 12:00 21.7 47 3.1 207 4-Jun 12:00 21.7 47 3.1 207
8-Jun 06:00-08:00 16.1 79 2.7 161 8-Jun 05:00-08:00 16.3 79 2.6 162

14-Jun 11:00 26.1 52 2.8 252 14-Jun 10:00 25.6 51 2.2 155

110 N (North) 110 N (South)
17-May 08:00 11.7 84 4.9 75 1-Jun 19:00-20:00 15.0 63 2.5 172

1-Jun 19:00 15.6 61 3.1 179 2-Jun 09:00 15.0 63 2.5 172
2-Jun 09:00 21.1 45 4.5 264 3-Jun 13:00-14:00 24.2 47 4.0 236
3-Jun 13:00 24.4 46 4.0 228 4-Jun 13:00 22.2 48 0.0 187
4-Jun 13:00 22.2 48 3.6 187 8-Jun 07:00 16.1 75 2.2 174
8-Jun 06:00 16.1 77 2.2 159 14-Jun 12:00 25.0 56 4.5 258

14-Jun 11:00 26.1 53 3.6 210

110 S (North) 110 S (South)
1-Jun 18:00 16.1 59 3.6 263 1-Jun 16:00-17:00 18.6 49 4.5 256
2-Jun 11:00, 13:00 21.7 41 4.7 256 2-Jun 10:00-12:00 21.1 45 4.5 263
4-Jun 11:00 20.6 51 3.6 228 4-Jun 10:00 20.0 54 3.1 225

14-Jun 14:00 24.4 57 3.1 278 14-Jun 12:00-13:00 25.3 54 2.9 271
15-Jun 18:00 18.3 74 2.7 281 15-Jun 16:00 22.2 63 2.7 260

405 (North) 405 (South)
1-Jun 18:00 16.1 49 4.5 275 17-May 12:00 18.3 65 1.8 357
2-Jun 10:00-11:00 20.0 47 3.4 253 2-Jun 12:00 20.0 66 4.9 275
4-Jun 11:00 18.3 57 2.7 216 15-Jun 16:00 19.4 77 2.7 200

14-Jun 13:00-14:00 23.3 61.5 3.4 278

60 (West) 60 (East)
19-May 11:00-12:00 20.6 48 3.1 180 17-May 14:00 18.3 52 3.1 148

3-Jun 08:00-09:00 20.6 51.5 1.6 201 19-May 11:00-12:00 20.6 48 3.1 180
8-Jun 09:00 16.7 65 2.2 194

91 (West) 91 (East)
19-May 11:00-12:00 20.8 53 3.4 148 1-Jun 17:00-18:00 16.9 55 4.0 261

2-Jun 12:00-13:00 21.7 40 4.9 260 2-Jun 10:00 21.1 48 4.0 277
15-Jun 17:00-18:00 19.4 71 2.5 281 4-Jun 10:00-11:00 20.3 53 3.4 227

14-Jun 13:00 25.0 54 3.1 261
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Pollutant concentrations were partitioned to estimate LDV and HDV emission factors. 
The approach used was similar to that used by Ban-Weiss (2008) (9). Pollutants 
measured on other freeways were apportioned using pollutant-to-CO2 emission 
ratios measured on 110N, where emissions were assumed to be solely from 
gasoline-fueled engines. The following equation summarizes the technique.  

 
Equation 4.2: Elevation in pollutant concentration due to diesel fuel combustion 

Δ [𝑃]𝑓,𝑑 =   Δ [𝑃]𝑓 −  Δ [𝐶𝑂2]𝑓,𝑔 �
Δ [𝑃]110𝑁
Δ [𝐶𝑂2]110𝑁

�   

 

where Δ [𝐶𝑂2]𝑓,𝑔  is the fraction of CO2 attributed to gasoline, and is apportioned 
using Equation 4.3 (below), which takes into account the difference in gasoline and 
diesel vehicle fuel economies.  

 
Equation 4.3: CO2 Apportionment 

Δ [𝐶𝑂2]𝑓,𝑔 =  Δ [𝐶𝑂2]𝑓 � 
 (1 − 𝑓𝑑)  ×  ( 1

𝐹𝐸𝑔)  × 𝜌𝑔  ×  𝑤𝑔 

(𝑓𝑑)  × ( 1
𝐹𝐸𝑑)  × 𝜌𝑑 × 𝑤𝑑 +  (1 − 𝑓𝑑)  × ( 1

𝐹𝐸𝑔)  × 𝜌𝑔 × 𝑤𝑔
� 

 

where 𝑓𝑑 represents the fraction of vehicles using diesel fuel, FE is the  fuel economy 
(mile L-1),  𝜌 Is the density of fuel (kg L-1), and wg and wd are the mass fraction of 
carbon in gasoline and diesel. Former studies (9, 27-28) have used an expression 
similar to Equation 4.3. An underlying assumption in use of this equation is that 
distances travelled by both gasoline and diesel vehicles are equal. While in former 
studies conducted in tunnel environments this assumption is valid, it should be used 
with caution in studies that employing mobile platforms. If gasoline-fueled (mostly 
LDV) and diesel-fueled (mostly HDV) engines vehicles are segregated in different 
lanes with significant differences in lane speeds, this will lead to significantly different 
distances travelled (and fuel burnt) by gasoline and diesel vehicles on that freeway. 
The MMP’s lane location and the direction of wind are also a consideration if lanes 
are segregated.  Using a fraction based solely on vehicle counts might therefore lead 
to erroneous results. A more accurate estimate of 𝑓𝑑 can be obtained by breaking 
down total vehicle miles travelled (if available) into those by gasoline and diesel 
vehicles over the measured span of the freeway, which inherently accounts for 
differences due to speed and thereby distance travelled and fuel burnt. This 
approach was used in the current study and CO2 was apportioned based on 
𝑓𝑑  calculated using Equation 4.4, where VMTd and VMTg are vehicle-miles traveled 
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by diesel and gasoline vehicles. Using this modified approach, Equation 4.3 can be 
re-written as Equation 4.5.  

 
Equation 4.4: Fraction of fuel consumed that was diesel 

𝑓𝑑 =  
𝑉𝑀𝑇𝑑

𝑉𝑀𝑇𝑑 +  𝑉𝑀𝑇𝑔
 

 

Equation 4.5: Revised CO2 Apportionment for mobile monitoring 

Δ [𝐶𝑂2]𝑓,𝑔 =  Δ [𝐶𝑂2]𝑓 � 
 𝑉𝑀𝑇𝑔  ×  (1/𝐹𝐸𝑔)  × 𝜌𝑔  ×  𝑊𝑔 

𝑉𝑀𝑇𝑑  × ( 1
𝐹𝐸𝑑

)  × 𝜌𝑑 ×  𝑊𝑑 +  𝑉𝑀𝑇𝑔  ×  ( 1
𝐹𝐸𝑔)  × 𝜌𝑔 ×  𝑊𝑔

� 

 

 

The values for fuel economy used in this study were 5.8 miles L-1 and 1.6 miles L-1 
for gasoline and diesel fuel engines, respectively. Similar to other studies (9) fuel 
density values were 0.74 kg L-1 and 0.84 kg L-1 for gasoline and diesel fuel, 
respectively.  

4.1.3.2 Traffic Characterization  

The total and break-down of vehicle miles travelled (VMT)  by HDV and LDV were 
obtained from aggregate data over all lanes of the freeway reported by the California 
Department of Transport (CALTRANS) Performance Measuring System (PeMS) 
(29), which is publicly available. Further, PeMS classifies VMT into those traveled by 
light-duty vehicles (LDV) and truck or heavy-duty vehicles (HDV). The PeMS dataset 
cannot account for VMT travelled by medium duty vehicles (MDV), and they are by 
default attributed to LDV. The 1.45% fraction of LDV VMT in Los Angeles County 
resulting from diesel powered engines were neglected. We assumed that all LDV 
VMT are travelled using gasoline fuel. Based on EMFAC 2011 (3) estimates for Los 
Angeles County, only 10% of VMT associated with MDV are travelled using diesel 
engines. Attributing all these to gasoline LDV VMT in addition to 1.45 % of diesel 
LDV VMT assumed to be gasoline, would lead to 2.2 % overestimation of LDV VMT. 
All VMT traveled by HDV were attributed to diesel fuel.  PeMS estimates truck traffic 
volume to within 5.7% of the values reported by weight-in-motion sensors (30). 

However, use of PeMS estimates does offer the advantage of obtaining HDV 
estimates at a much finer spatial resolution (than limited weight-in-motion truck 
sensors), which was required in this study for relating real-time pollutant 
measurements to real-time traffic estimates.  
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4.1.3.3 Freeway emission rate calculations  

Partitioned EFs were used to calculate freeway emission rates (ER), i.e., pollutant 
mass/number emitted per mile of freeway per unit time (kg or g or # mile-1 h-1) using 
Equation 4.6 for six freeways. The subscripts p and f are for pollutant and freeway, 
respectively.  
Equation 4.6: Freeway emission rate estimation 

𝐸𝑅 =   𝑉𝑀𝑇𝐻𝐷𝑉  ×  𝐸𝐹𝐻𝐷𝑉 × �
1

𝐹𝐸𝐻𝐷𝑉
� × 𝜌𝑑  + 𝑉𝑀𝑇𝐿𝐷𝑉  ×  𝐸𝐹𝐿𝐷𝑉 × �

1
𝐹𝐸𝐿𝐷𝑉

� × 𝜌𝑔  

 

4.2  RESULTS AND DISCUSSION 

4.2.1 Pollutant Concentrations 

Comparison across the freeways suggests that pollutant concentrations on gasoline 
or LDV dominated freeways were lower than those with higher fraction of HDVs. 
Concentrations appear to have dropped in the last decade as well. Median 
concentrations on I-710 BC, UFP NO were dramatically lower, i.e., 37.5 %, 32.1% 
and 37.2%, respectively, of their median values reported for measurements 
conducted in spring of 2003 by Fruin et al. (16). Comparison to summer 2005 
concentrations reported by Fujita et al. (33) for the morning (AM) period on similar 
segments of freeways, i.e., when the proportion of trucks was high/highest also 
suggest a reduction. Comparison to values for afternoon (PM) hours, during which 
traffic is dominated by gasoline vehicles, as reported by Fujita et al. (33), did not 
suggest any clear trend. Average concentrations for various pollutants and freeways 
are listed in Table 4.3 

4.2.2  LDV and HDV emission factors 

Emission factors for light -and heavy-duty vehicles, calculated using Equations 4.2, 
4.3 and 4.6 are shown in Table 4.4. It should be noted that standard deviations for 
HDV are much higher compared to LDV due to propagation of uncertainties related 
to apportioning HDV fractions, but also reflect the relatively larger variation in HDV 
fleet freeway-to-freeway. However, freeway-to-freeway differences in vehicle 
emission factors were not significant enough to merit separate discussion, except for 
I-710, where slightly lower EFs were observed. Consistent with the trend reported by 
Ban-Weiss et al. (9) and Bishop and Stedman (20) lower NOx and NO emission 
factors were found for HDV, though the spread was relatively high. Specifically for I-
710, NOx and NO emission factors were 21 ± 5 g/kg-fuel and 12 ± 4 g/kg-fuel 
(n=14). LDV NOx and NO emission factors were found to be comparable to the most 
recent studies – Ban Weiss et al. (9) and Bishop and Steadman (19). This decrease 
could be interpreted with some caution as a consequence of the Clean Air Action 
Plan (21) and CARB regulations (2). 
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Table 4.1: Comparison of Emission factors from current study to previous studies 

Reference Year of 
measur
ement 

Vehicle 
Type 

NO NOx† BC PM2.5 PNC 

      g kg-

1 
g kg-1 g kg-1 g kg-1 # kg-1 

This work 2011 LDV 1.8 ± 
0.01 

3.0 ± 0.01 0.02 ± 
0.009 

0.16 ± 
0.04 

(2.9 ± 0.53) x 
10e14 

   HDV 13.1 ± 
6.6 

24.4 ± 
10.7 

0.53 ± 0.39 0.60 ± 
0.54 

(5.7 ± 2.5) x 10e15 

Bishop et al., 
2008,2009 

2008 LDV 3.2     

  HDV 17.7 30.5 

 

   

Park et al., 
2011* 

2007 LDV   9.4 

(2.5-5.7) 

0.06 

(0.01-0.03) 

0.15 

(0.04-0.07) 

6.0 × 10e14 

(1.5-5.2) × 10e14 

   HDV   34 

(6.8-17.6) 

0.5 

(0.07-0.17) 

0.73 

(0.08-0.33) 

4.5 × 10e15 

(0.71-1.4) × 10e15 

Ban-Weiss et 
al., 

2008, 2010 

2006 LDV   3.0 ± 0.2 0.026 ± 
0.004 

0.07 ± 
0.02 

(3.9 ± 1.4) x 10e14 

   HDV   40 ± 3.0 0.92 ± 0.07 1.4 ± 0.3 (3.3 ± 1.3) x 10e15 

Kirchestetter et 
al., 1999a 

1997 LDV   9.0 ± 0.4 0.035 ± 
0.004 

0.11 ± 
0.01 

  

    HDV   57 ± 7 1.4 ± 0.6 2.7 ± 0.3   

Geller et al., 
2005 

2004 LDV     0.07 ± 
0.03 

(2.5 ± 1.4) x 10e15 

    HDV     1.02 ± 
0.06 

(8.2 ± 6.3) x 
10e15  

†expressed as NO2 equivalents, * mean (median values across various driving 
modes) 



71 

Table 4.2: Pollutant concentrations on freeways 

 

Direction in parentheses indicates lane of travel.  Note: I-110 is divided into a LDV-only section (110 N) and a mixed fleet section 
(110 S). 

 

Route Statistic CO2 CO BC NO NOx PNC PM2.5 PB-PAH Speed
ppm ppm ng/m3 ppb ppb #/cm3 mg/cm3 ng/m3 miles h-1

I-110N Mean 495 1.4 3190 88 69 29929 0.03 34 44
SD 48 1.2 3482 53 49 15697 0.032 83 18

Median 485 1.35 3550 78 54 25900 0.03 17 53
5th Percentile 436 0.5 1373 23 12 14735 0.012 6 12

IQR (463 - 516) (0.9 - 1.9) (1930 - 4130) (52 - 115) (30 - 93) (19600 - 35000) (0.016 - 0.073) (10 - 32) (44 - 57)
I-110S Mean 474 1.6 3642 119 104 42772 0.021 47 49

SD 30 1.9 5816 71 74 25268 0.014 61 21
Median 470 1.4 2350 103 82 38000 0.02 30 58

5th Percentile 432 0.6 718 43 31 13641 0.01 10 0
IQR (455 - 489) (0.9 - 1.8) (1540 - 3480) (76 - 142) (56 - 133) (26900 - 52900) (0.01 - 0.02) (19 - 54) (44 - 63)

I-405 Mean 497 1.3 6049 121 98 43493 0.024 75 46
SD 40 0.6 6894 60 54 31335 0.015 99 24

Median 488 1.2 4490 114 91 34000 0.02 51 59
5th Percentile 445 0.6 986 42 28 13454 0.008 11 1

IQR (470 - 516) (0.8 - 1.5) (2500 - 7490) (81 - 144) (60 - 124) (22500 - 53800) (0.01 - 0.03) (29 - 94) (24 - 65)
I-710 Mean 493 1 8665 194 152 72255 0.024 82 54

SD 37 1 20719 85 74 61994 0.017 67 16
Median 491 1.05 4554 170 131 57298 0.02 59 60

5th Percentile 438 0 835 73 53 20643 0.009 15 16
IQR (466 - 516) (0 - 1.5) (2483 - 8045) (132 - 244) (99 - 189) (43387 - 85635) (0.015 - 0.025) (38 - 104) (50 - 65)

SR-91 Mean 482 1.5 6295 158 140 54014 0.024 98 51
SD 34 1.2 4940 86 90 40303 0.014 123 20

Median 478 1.3 4750 147 123 46900 0.02 65 61
5th Percentile 429 0.7 1203 43 30 12803 0.01 12 7

IQR (502 - 459) (1.6 - 0.9) (8180 - 2790) (211 - 93) (187 - 73) (67600 - 25800) (0.03 - 0.02) (119 - 32) (65 - 40)
SR-60 Mean 509 1.8 10411 190 170 68289 0.027 122 35

SD 46 0.7 5537 105 100 41468 0.009 115 24
Median 501 2 9950 193 178 60994 0.025 102 32

5th Percentile 449 1.2 3342 47 24 19197 0.015 9 0
IQR (533 - 475) (1.9 - 1.4) (15072 - 5050) (250 - 101) (226 - 84) (84759 - 39627) (0.031 - 0.02) (169 - 39) (60 - 17)
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4.2.3 Fraction contribution of HDV to total emissions 

LDV and HDV emission factors can differ by up to a magnitude or more. Coupled 
with the much lower HDV fuel economy (miles travelled per kg of fuel burnt), it 
results in highly disproportionate contributions from HDV to total emissions. 
Fractional contribution of HDV (EfHDV or emission fraction) to total NOX, BC and PNC 
emissions was calculated using Equation 4.7. 

  
Equation 4.7: Fractional contribution of HDV to total emissions 

𝐸𝑓𝐻𝐷𝑉 =  
 𝐸𝐹𝐻𝐷𝑉 × � 1

𝐹𝐸𝐻𝐷𝑉
� × 𝜌𝑑

𝐸𝐹𝐿𝐷𝑉 × � 1
𝐹𝐸𝐿𝐷𝑉

� × 𝜌𝑔 + 𝐸𝐹𝐻𝐷𝑉 × � 1
𝐹𝐸𝐻𝐷𝑉

�× 𝜌𝑑
 

 
Figure 4.1: Contribution of HDV to total emissions 

Results suggest that HDV contributing a mere 1 % to VMT would be responsible for 
25% of NOx, 44% of PNC and 36% of total BC emissions. Concordantly, for a mile of 
travel, HDV emissions were 33, 55 and 79 times that of LDV emissions for NOX, BC 
and PNC, respectively. The latest studies conducted in Caldecott tunnel 4 years ago 
(9, 18), which has a 4% up-grade that  puts engines under higher load,  showed 
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much higher HDV emissions for NOX and BC, but lower for PNC. Specifically, based 
on vehicle emission factors and fuel efficiency values reported by Ban-Weiss et al. 
(9), HDV emissions were 73, 193 and 46 times of LDV emissions for NOx, BC and 
PNC, respectively. These differences (in part due to both emission technology 
improvements and real-freeway driving) convey the need for estimation of real-
driving based emission factors in Los Angeles to trace the effects of regulation and 
emission improvements.  

Figure 4.2 shows the fraction of total emissions attributable to HDV based on this 
study’s EF, and also compares them to previous studies. Accounting for the standard 
deviation, the fractional contribution of HDV to NOx emissions was lower in 2011 
compared to measurements conducted in 2006, by Ban-Weiss et al. (9), but higher 
than the mean value reported by Park et al. (25) for measurements conducted in 
2007. It should be noted that this difference is due to a much higher LDV NOx 
emission value reported by Park et al., (25) (about three times than other recent 
studies). Contribution of HDV to BC and UFP emissions in the present study was 
comparable to previous studies    

4.2.4 Freeway Pollutant Emission Rates 

4.2.4.1 Annual average emission rates 

Pollutant emission rates for four freeways were computed using Equation 4.6. Daily 
VMT (and fraction due to HDV) on the entire segment of freeway in Los Angeles 
County during the 215 working days from Dec 1, 2010 – Nov 30, 2011 were used to 
generate daily emissions from freeway during normal working days. Further 
normalized by 24 hours, annual average hourly value for emission rates are plotted 
in Figure 4.3 and daily time series for VMT and HDV VMT is shown in Figure 4.4. 
Except for summer to fall increase in port related goods activity on I-710, there were 
no significant seasonality aspects to consider. (Standard deviation in VMT was < 2% 
and trucks was < 5%.) Despite lower VMT attributable to HDV on I-110S and CA-91, 
ER on I-110S were comparable to I-710 and ER for CA-91 was significantly higher 
than I-710. Conventionally, I-710 has often been studied as a high end of freeway 
emissions. The present results suggest that ‘truck counts’ may not be a sufficient or 
the best indicator of line emission sources like freeways. Emissions are better 
correlated with vehicle activity, including speed, than vehicle counts. Using an 
indicator like ‘vehicle miles travelled,’ which accounts both count and speed, may be 
better suited for modeling techniques predicting concentrations near roadways.  
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Figure 4.2: Annual average hourly freeway emission rates  

 
Figure 4.3: Vehicle miles travelled, truck vehicle miles travelled and fraction of total 
miles traveled by truck on four Los Angeles freeways in LA County during 12/1/2010 – 
30/11/2011. 
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4.2.4.2 Diurnal variation in freeway emission rates 

Mean hourly VMT (and fraction due to HDV) on the freeway segments for an 
archetypal month, May 2011, were used to generate diurnal profiles. Pollutant 
emission rates have been plotted in Figure 4.5 (a) – (d). Several important 
observations can be made from these figures. Firstly, as expected, diurnal profiles of 
emission rates are shaped similarly to the vehicle activity profiles on each freeway 
(See Figure 4.6). Secondly, unlike concentration profiles, which tend to be bi-modal 
(32-34) with peaks during the morning and evening commute hours, the emission 
rate profile has a single mode in the middle of the day. During midday (10:00 – 13:00 
hours) a drop in vehicle activity is often observed, more strongly in vehicle flow 
(number of vehicles per hour) than in vehicle miles travelled. However, HDV activity 
increases and peaks during midday hours. The emissions from increased HDV 
activity seem to compensate for- and in fact outweigh any reductions in emission due 
to fewer vehicles, thereby producing distinctly uni-modal profiles for emission rates. 
As noted above, this contrasts the pollutant concentration profiles that have often 
been reported to be bi-modal for multiple pollutants near roadway locations and 
urban areas impacted by traffic sources (32-34).  The reduction in pollutant 
concentrations reported during mid-day hours (often half or lower) is likely due to the 
increase in atmospheric dispersion (increase in mixing height) and in wind speed 
(34) during this time period, despite the apparent increase in emission rates, and 
underscores the role of meteorology, in addition to traffic sources, on the observed 
concentrations of air pollutants even in urban areas impacted by vehicular 
emissions.  

 

Figure 4.4: Diurnal profiles for freeway emission rates 
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Figure 4.5: Diurnal vehicle activity trend on two Los Angeles freeways, representative 
of general trend on all freeways. 

 

4.2.4.3 Freeway-to-freeway variability in emission rates 

Since freeway emissions are often dominated by HDV fraction, a variation in freeway 
emissions can be expected due to considerable variation in HDV fractions on Los 
Angeles freeways and differences VMT (and HDV fraction) at different times of the 
day. To test the freeway-to-freeway variability in hourly emission rates, Kruskal-
Wallis test (nonparametric version of the classical one-way analysis of variance, not 
requiring normal population distributions or equal variance (35), was conducted for 
the hypothesis that the mean of hourly emission rates on all freeways was the same. 
The distributions were considered statistically different if p < 0.05. The results are 
presented in Table 4.5. Generally, emission rates for UFP and BC were not 
significantly different across most freeways, though greater variation was found in 
NOx,NO and PM2.5 hourly emission rates. Hourly emission rates on freeway I-110N 
were significantly different (and lower) from all other freeways for all pollutants, 
except for NOx on CA-91 and PM2.5 on CA-60. Emission rates for I-110S, I-405 and 
I-710 had similar distribution. CA-60 had a different distribution than both 110N and 
110S, but was most similar to the I-710. 
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Table 4.3: P-values for non-parametric ANOVA analysis of freeway-to-freeway 
differences in hourly emission rates (p-value < 0.05 for freeways having different 
distribution of hourly emission rates)   

Pollutant NOx UFP 

Freeway I-110N I-110S I-405 CA-60 I-710 CA-91 I-110N I-110S I-405 CA-60 I-710 CA-91 

I-110N 1      1      

I-110S 0.00 1     0.00 1     

I-405 0.00 0.59 1    0.00 0.45 1    

CA-60 0.02 0.01 0.03 1   0.02 0.04 0.09 1   

I-710 0.01 0.30 0.65 0.18 1  0.00 0.80 0.54 0.14 1  

CA-91 0.18 0.00 0.01 0.36 0.04 1 0.00 0.32 0.17 0.02 0.41 1 

             

Scale <0.10 <0.2 <0.4 <0.6 <0.80 1.00 <0.10 <0.2 <0.4 <0.6 <0.80 1.00 

Pollutant BC PM2.5 

Freeway I-110N I-110S I-405 CA-60 I-710 CA-91 I-110N I-110S I-405 CA-60 I-710 CA-91 

I-110N 1      1      

I-110S 0.00 1     0.00 1     

I-405 0.00 0.43 1    0.00 0.87 1    

CA-60 0.03 0.02 0.06 1   0.07 0.00 0.01 1   

I-710 0.01 0.98 0.71 0.14 1  0.01 0.03 0.04 0.11 1  

CA-91 0.00 0.48 0.30 0.01 0.33 1 0.00 0.32 0.29 0.01 0.09 1 

 

4.3 SUMMARY AND CONCLUSIONS 

Hourly-aggregate vehicular activity on several freeways was related to vehicle 
emission factors to estimate pollutant emission rates from these freeways 
(mass/number mile-1 h-1) and their hourly distribution. Three parameters drive these 
distributions – total VMT per mile on the freeway, fraction of VMT due to HDV, and 
the ratio of LDV to HDV emission factors. It was found that the hourly distributions of 
emission rates may vary significantly among different freeways. This implies that 
vehicle fleet mix on the freeway in addition to total vehicle activity should be taken 
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into consideration as a significant variable that characterizes the emissions of air 
pollutants from that freeway. Further, VMT as well as truck (or HDV) fraction of VMT 
is a better surrogate for characterizing emission source strength than total vehicle 
and or truck counts. This is corroborated by the lack of mid-day reduction in emission 
rates in contrast to a drop in mid-day traffic counts. The use of traffic counts as a 
surrogate of emission source strength of a given roadway is therefore not a reliable 
predictor of the pollutant concentrations in the vicinity of this freeway, and the role of 
meteorological parameters, such as atmospheric dilution and wind speed, is equally 
crucial in influencing the values of these concentrations downwind a freeway.      

 

REFERENCES 

(1) CARB. 2009 Estimated Annual Average Emissions; California Air Resources Board: 
Sacramento, 2009. 

(2) EPA, Current Emissions Trends Summaries from the NEI, 2011 
(3) CARB. California Motor Vehicle Emission Factor/Emission Inventory Model. EMFAC 

V 2.3. California Air Resources Board, Research Division: Sacramento, 2011. 
 

(4) Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, 
Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, 
Whitsel L, Kaufman JD; American Heart Association Council on Epidemiology and 
Prevention, Council on the Kidney in Cardiovascular Disease, and Council on 
Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and 
cardiovascular disease: An update to the scientific statement from the American 
Heart Association, Circulation. 2010, 121, 2331-78. 

(5) Salam MT, Islam T, Gilliland FD. Recent evidence for adverse effects of residential 
proximity to traffic sources on asthma, Curr Opin Pulm Med. 2008, 14, 3-8. 

(6) Pope, C. A. and Dockery, D.W. Health effects of fine particulate air pollution: Lines 
that connect, J. Air Waste Manage. Assoc. 2006, 56, 709–742. 

(7) Lloyd, A. C. and Cackette, T.A. Diesel engines: Environmental impact and control. J. 
Air Waste Manage. Assoc. 2001, 51, 809–847. 

(8) Sawyer, R. F.; Harley, R.A.; Cadle, S.H.; Norbeck, J.M.; Slott, R. and Bravo, H.A. 
Mobile sources critical review. Atmos. Environ. 2000, 34, 2161–2181. 

(9) Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.; Kirchstetter, T.W.; 
Kean,A.J.;Strawa, A.W.; Stevenson, E.D. and Kendall, G.R. Long-Term Changes in 
Emissions of Nitrogen Oxides and Particulate Matter from On-Road Gasoline and 
Diesel Vehicles. Atmos. Environ. 2008, 42, 220-232. 

(10) Janssen, N.A.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; Ten Brink, H.; 
Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B. and Cassee, F.R. Black 
Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles 
Compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691-1699. 

(11) Li, N.; Wang, M.; Bramble, L.A.; Schmitz, D.A.; Schauer, J.J.; Sioutas, C.; Harkema, 



79 

J.R. and Nel, A.E. The Adjuvant Effect of Ambient Particulate Matter Is Closely 
Reflected by the Particulate Oxidant Potential. Environ. Health Perspect. 2009, 117, 
1116-1123. 

(12) Delfino, R.J.; Malik, S. and Sioutas, C. Potential role of ultrafine particles in 
associations between airborne particle mass and cardiovascular health. Environ. 
Health Perspectives. 2005, 113, 934-946. 

(13) Morgan, T.E.; Davis, D.A.; Iwata, N.; Tanner, J.A.; Snyder, D.; Ning, Z.; Kam, W.; 
Hsu, Y.; Winkler, J.W; Chen, J; Petasis, N.A.; Baudry, M.; Sioutas, C. and Finch, 
C.E. Glutamatergic Neurons in Rodent Models Respond to Nanoscale Particulate 
Urban Air Pollutants in Vivo and in Vitro. Environ. Health Perspect. 2011, 119, 766-
772. 

(14) Gan, W.; Tamburic, L.; Davies, H.W.; Demers, P.A.; Koehoorn, M. and Brauer, M. 
Long-Term Exposure to Traffic-Related Air Pollution and the Risk of Coronary Heart 
Disease Hospitalization and Mortality. Environ. Health Persp. 2011, 119, 501–507. 

(15) Harley, R.A.; Marr, L.C.; Lehner, J.K. and Giddings, S.N. Changes in motor vehicle 
emissions on diurnal to decadal time scales and effects on atmospheric composition. 
Environ. Sci. Technol. 2005, 39, 5356–5362. 

(16) Fruin, S.; Westerdahl, D.; Sax, T.; Sioutas, C. and Fine, P.M. Measurements and 
Predictors of On-Road Ultrafine Particle Concentrations and Associated Pollutants in 
Los Angeles. Atmos. Environ. 2008, 42, 207-219. 

(17) Kozawa, K.H.; Fruin, S.A.; Winer, A.M. Near-road air pollution impacts of goods 
movement in communities adjacent to the Ports of Los Angeles and Long Beach. 
Atmos. Environ. 2009, 43, 2960-2970.  

(18) Ban-Weiss, G.A.; Lunden, M.M.; Kirchstetter, T.W. and Harley, R.A. Size-resolved 
particle number and volume emission factors for on-road gasoline and diesel motor 
vehicles. Journal of Aerosol Science.  2010, 41, 5-12. 

(19) Bishop, G.A. and Stedman, D.H. A decade of on‐road emissions measurements. 
Environ. Sci. Technol. 2008, 42, 1651–1656. 

(20) Bishop, G.A.; Holubowitch, N.E.; Stedman, D.H. Remote measurements of on‐road 
emissions from heavy‐duty diesel vehicles in California; Year, 1, 2008. Report, Univ. 
of Denver, Denver, Colo. 2009. 

(21) San Pedro Bay Ports Clean Air Action Plan, Port of los Angeles and Port of Long 
Beach,  http://www.cleanairactionplan.org/ 

(22) CARB, ARB's Drayage Truck Regulatory Activities,  
http://www.arb.ca.gov/msprog/onroad/porttruck/porttruck.htm, 2011 

(23) Westerdahl, D.; Fruin, S.; Sax, T.; Fine, P.M. and Sioutas C. Mobile platform 
measurements of ultrafine particles and associated pollutant concentrations on 
freeways and residential streets in Los Angeles. Atmos. Environ. 2005, 39, 3597–
3610. 

(24) Wang X.; Westerdahl, D.; Wu, Y.; Pan, X. and Zhang, K.M. On-road emission factor 
distributions of individual diesel vehicles in and around Beijing, China. Atmos. 
Environ. 2011, 45, 503-513. 

http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=22&SID=1A13nAbFP2@A3ebjkd@&page=1&doc=3�
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=22&SID=1A13nAbFP2@A3ebjkd@&page=1&doc=3�
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=22&SID=1A13nAbFP2@A3ebjkd@&page=1&doc=3�
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=27&SID=1A13nAbFP2@A3ebjkd@&page=1&doc=4�
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=27&SID=1A13nAbFP2@A3ebjkd@&page=1&doc=4�
http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=27&SID=1A13nAbFP2@A3ebjkd@&page=1&doc=4�
http://www.cleanairactionplan.org/�


80 

(25) Park, S.S.; Kozawa, K.; Fruin, S.; Mara, S.; Hsu, Y.; Jakober, C.; Winer, A. and 
Herner, J. Emission Factors for High-Emitting Vehicles Based on On-Road 
Measurements of Individual Vehicle Exhaust with a Mobile Measurement Platform. J. 
Air Waste Manage. Assoc. 2011, 61, 1046-1056. 

(26) California Department of transportation, Annual Average Truck Counts 200. 
(27) Kirchstetter, T.W.; Harley, R.A.; Kreisberg, N.M.; Stolzenburg, M.R. and Hering, S.V. 

On-road measurement of fine particle and nitrogen oxide emissions from light- and 
heavy-duty motor vehicles. Atmos. Environ. 1999, 33, 2955–2968.  

(28) Geller, M.D.; Sardar, S.B.; Phuleria, H.; Fine, P.M. and Sioutas, C. Measurements of 
particle number and mass concentrations and size distributions in a tunnel 
environment. Environ. Sci. Technol. 2005, 39, 8653–8663. 

(29) Performance E Measuring System (PemS),Caltrans 
(30) Kwon J.; Varaiya P. and Skabardonis, A. Estimation of truck traffic volume from 

single loop detectors with lane-to-lane speed correlation. Freeways, High-Occupancy 
Vehicle Systems, and Traffic Signal Systems. 2003, 1856, 106-117. 

(31) Fujita, E. M., David E. C., Zielinska B.,  Arnott W.P., and ChowJ.C.,  Concentrations 
of Air Toxics in Motor Vehicle-Dominated Environments, Health Effects Institute, 
2011 

(32) Hudda N., Cheung K., Moore K. F., Sioutas C., Inter-community variability in total 
particle number concentration in eastern Los Angles air basin. Atmos. Chem. Phys., 
2010, 10, 11385-11399 

(33)  Moore K.F., Krudysz M., Pakbin P., Hudda N., Sioutas C. Intra-Community 
Variability in Total Particle Number Concentrations in the San Pedro Harbor Area 
(Los Angeles, California). Aerosol Sc.Technol., 2009, 43, 587-603 

(34) Ntziachristos L., Ning Z., Gellar M., Sioutas C. Particle concentration and 
characteristics near a major freeway with heavy-duty diesel traffic. Environ. Sci. 
Technol. 2007, 41, 2223-2230 

(35) Gibbons, J. D. Nonparametric Statistical Inference. New York: Marcel Dekker, 1985.  



81 

5. CHAPTER FIVE, PART I. LINKING IN-VEHICLE ULTRAFINE PARTICLE 
EXPOSURES TO ON-ROAD CONCENTRATIONS 
(based on Task 4: Develop and validate in-vehicle exposure models for BC, 
UFP number, PM2.5, particle-bounded PAH, and NOx.) 
 
Note: this task and chapter has two parts. Part I describes the development of an in-
vehicle air exchange and particle loss model using particle number concentrations. 
Part II describes the on-road concentration models for all pollutants.  These two 
components are both necessary to determine in-vehicle concentrations.  
 
The overarching goal of Task 4 was to predict exposures of human subjects while in 
vehicles. Therefore, although some important characterization data were used in 
Tasks 1-3 such as AER, we are not aiming to perform a detailed characterization of 
the complex dynamics of exposure for all vehicle-related pollutants. However, we 
laid a strong foundation from which to do this by: 1) establishing the importance of 
AER in affecting the differences between on-road and in-vehicle concentrations; 2) 
developing predictive AER models that use easy-to-obtain information that can be 
made available to epidemiologists; and 3) showing that other particle-related 
pollutants are also highly dependent on AER.  The modeling effort here will include 
statistical analyses of many serially correlated predictors and will use an approach 
that incorporates predictors anticipated to be available in exposure models in 
epidemiologic studies.  
 

5.0 INTRODUCTION 

The particular components of traffic emission responsible for causing adverse health 
effects are not known (1,2), but ultrafine particles (UFP), defined as particles having 
aerodynamic diameter less than 100 nm, are of particular interest due to their high 
surface area and the ability to trans-locate through epithelium as well as their high 
proportion of organic and metals content and resulting high oxidative potential  
(1,3,4). 
 
Numerous studies (e.g., 5,6) have shown that UFP concentrations on or in the 
vicinity of roadways are frequently almost one order of magnitude higher than 
ambient levels. This has important implications for exposure assessment. For 
example, less than 10% of daily time spent in vehicular transit microenvironments  
(7) has been estimated to contribute 35-50% of total UFP exposure by Fruin et al. (8) 
for Los Angeles residents under open window conditions and 17% by Wallace and 
Ott (9) for more suburban locations. However, large variations in exposure incurred 
inside vehicles are expected to occur not only due to differences in roadway 
environments but also because inside-to-outside ratios (i.e., in-vehicle to roadway 
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concentration ratios) (I/O) vary from vehicle to vehicle due to differences in 
ventilation conditions and other vehicle characteristics that affect air exchange rate 
(AER), which is defined as the number of times per hour vehicle cabin air is replaced 
by roadway/outside air. In general, UFP I/O ratios in vehicles can range from nearly 
zero to nearly one.  
 
Recent studies have shown that I/O is strongly dependent on AER.  Knibbs et al. 
(10) reported an r2 of 0.81 (Pearson correlation coefficient) between AER and I/O.  
This study, as the present, performed measurements under real driving conditions 
(multiple speed and ventilation conditions) and found that ventilation preference 
(windows open, outside air intake or in-cabin air recirculation) and ventilation fan 
setting strongly influences AER and the resulting I/O ratio.  
 
As it is impractical to measure either the I/O ratio or AER for large numbers of 
subjects’ vehicles required in an epidemiological study addressing drive-time 
exposure, predictive models are needed for estimating AER and I/O ratios. If these 
models could be based on information that can be collected via questionnaire, they 
can be useful tools for accurately estimating personal UFP exposures and their 
associated health effects. The purpose of the part of the study presented here was to 
measure UFP I/O ratios and AER in a sufficiently large number of vehicles to 
develop accurate predictive models for assessing drive-time UFP exposure based on 
easy-to-obtain information.  
 
5.1 METHODS 

5.1.1 Vehicle selection and ventilation conditions tested 
Vehicles were selected to provide a wide distribution of age and mileage, which are 
both important factors affecting AER, albeit highly correlated.  Measurements were 
performed in 73 vehicles that were selected from different size categories (sub-
compact, compact, mid-size, etc.) in proportions similar to their presence in U.S. 
fleet. To expand our data and include outside air ventilations test conditions at non-
zero speeds, in addition to other settings, we also added data from Knibbs et al. 
(10,11) measurements in Sydney (Australia) to Los Angeles measurements, where 
the bulk of the measurements were performed.  

Measurements were made with the air conditioning system operating at both 
ventilation setting options: recirculation (RC), where the in-cabin air is re-circulated, 
and outside air intake (OA), where outside air is drawn into the vehicle cabin and 
passed through a filter (if present). Overall, AER was measured in 73 vehicles for 
453 unique combinations of vehicle, speed, and ventilation fan setting (308 at RC 
and 145 at OA setting) and I/O ratio was measured in 43 vehicles for 241 
combinations (110 at RC and 131 at OA setting).  Table 5.1 list the vehicles tested 
for this study.  
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Table 5.1: List of Vehicles tested in the study. 

Manufacturer Model Year Odometer Manufacturer Model Year Odometer 

Mazda  Mazda121 1989 98955 Chevrolet Tahoe 2002 157776 

Toyota Cressida 1990 286872 Ford  E Series 2003 196778 

Buick Sabre 1991 191198 Chevrolet Silverado 2004 123634 

Toyota Camry 1992 332878 Chevrolet Cavalier 2004 109509 

Buick Sabre 1992 197576 Chevrolet Traverse 2004 43235 

Cadillac DeVille 1993 265342 Toyota Corolla 2005 53234 

Honda Accord 1993 134521 Honda Accord 2005 106656 

Saab Saab 1994 137600 Chevrolet Silverado 2005 152896 

Chevrolet Astro van 1995 280046 Mazda Mazda-6 2005 141003 

Jeep  Cherokee 1995 225835 VW Golf 2005 10663 

Jeep  Cherokee 1995 306675 Toyota Scion xB 2006 70538 

Toyota Corolla 1996 300774 GMC Sierra 2006 118160 

Nissan Sentra 1996 428982 Toyota Corolla 2006 139461 

Toyota RAV4 1997 295957 GMC Colorado 2007 65238 

Hyundai Accent 1997 164968 Honda Accord 2007 67800 

Honda Civic 1998 137430 Toyota Yaris 2007 67141 

Mitsubishi Magna 1998 85677 Toyota Matrix 2007 65501 

Honda Civic 1999 122336 Subaru Outback 2007 6777 

Toyota Lexus 1999 80528 Chrysler Crysler300 2008 66955 

Ford Expedition 1999 86061 Toyota  Hilux 2005 6992 

Honda Accord 1999 244470 Toyota Prius 2009 16713 

Ford Taurus 1999 156619 Toyota Scion xD 2009 11200 

Ford Contour 1999 183632 Toyota Scion XB 2009 63894 

Honda Accord 2000 148626 Toyota  Matrix 2009 42078 

Subaru Liberty 2000 58648 Ford Explorer 2010 1893 

Toyota Corolla 2000 126176 Toyota Prius 2010 4733 

Toyota Camry 2000 167235 Toyota Prius 2010 26741 

Chevrolet Tahoe 2001 142445 Toyota Scion XB 2010 39934 

Ford Escort 2001 202419 Honda Insight 2010 45771 

Nissan Pathfinder 2001 258848 Honda Insight 2010 39740 

Chevrolet Cavalier 2001 80184 Honda Civic 2010 10245 
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Chevrolet Express 
2500SL 

2002 24882 Smart SmartCar 2010 2339 

Nissan Infinity 
G35 

2002 98219 Toyota Prius 2010 1893 

Toyota Camry 2002 173610 Honda  Civic 2010 35520 

Toyota RAV4 2002 387434 Hyundai Elantra 2011 660 

Audi A4 2002 166126     

 

5.1.2 Speed and routes driven 

In the Los Angeles measurements, in order to maintain a steady AER, 
measurements were made while driving at near constant speeds that ranged from 
20- 65 miles h-1. Experiments at speeds up to 35 miles h-1 were conducted around 
the Rose Bowl, Pasadena, a 3.3 mile loop where vehicular traffic was light. 
Measurements at speeds ranging from 55-70 miles h-1 were made on Freeways I-10, 
CA-60 and I-605 during free flowing traffic conditions. An on-board Global 
Positioning System (GPS) device (Garmin GPSMAP 76CSC) recorded the location 
and speed of the car at 1-s intervals.  

In Sydney, measurements were performed during trips through a 2.5 mile long road 
tunnel and on above-ground roads in its vicinity.  AER measurements were 
performed with test vehicles stationary and when driving on open roads at 37 and 68 
miles h-1. The measurements are described in detail by Knibbs et al. (11). Each I/O 
sampling session in a given vehicle involved multiple trips through the tunnel 
(reported in Knibbs et al. (10) interspersed with above-ground travel. Average 
vehicle speeds on each segment of the sampling route were calculated based on 
known distance and time taken, because poor satellite reception impeded GPS 
based measurements of speed.  

5.1.3 Particle concentration measurement, I/O and AER determination 

Air exchange rates were determined using Carbon Dioxide (CO2) as a tracer gas and 
measurements were made using either TSI Q-Trak model 7565 (TSI Inc., MN, USA) 
or LI-COR Li-820 units (LI-COR Biosciences, NE, USA) for the vehicles that were 
tested in Los Angeles. The AER determination procedure is detailed in publications 
from the present study: Fruin et al. (12) and Hudda et al. (13). Sulfur Hexafluoride 
(SF6) was used as a tracer gas for the vehicles tested in Sydney using an Innova 
type 1412 (Lumasense Technologies, Ballerup, Denmark) photo-acoustic field gas 
monitor and Innova type 1303 multipoint sampler and doser. Further details for these 
measurements can be found in Knibbs et al. (11).  We (12) have demonstrated very 
good agreement with predictions reported by Knibbs et al. (11) (Pearson r2 = 0.83), 
despite the use of different tracer gases.  
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Particle measurements at both locations were performed with a TSI Model 3007 
Condensation Particle Counter (CPC) with a 50% lower size detection limit of 10 nm. 
In Los Angeles, in-vehicle to roadway concentration ratios (I/O) were determined as 
the average value observed for at least 10 minutes of measurement after a stable 
value had been attained (i.e., a standard deviation less than 5%). To harmonize the 
I/O measurements across the two study locations, those performed in Sydney (10) 
were weighted by their respective durations. Data quality assurance comprised 
regular flow and zero reading checks. In Los Angeles, all instruments used were run 
simultaneously before and after test runs to check for consistency of response and 
ambient concentrations. All instruments were synced to within 1 s of the time 
recorded by GPS. Further details on measurements are available in our publication 
(13).  

5.1.4 Predictive models 

Models were developed to predict AER and I/O for UFPs under both RC and OA 
conditions, using the following as candidate independent variables: ventilation fan 
(fraction of maximum setting), vehicle age (years), mileage (thousands of miles), 
speed (miles h-1), manufacturer (United States, Japan or Germany/Other), interior 
volume (ft3), and the product of coefficient of drag (Cd) and frontal area (A, m2) along 
with pair-wise interactions between vehicle speed, age, and fan setting, and between 
Cd and frontal area of the vehicle. Ventilation fan fraction was defined as the ratio of 
the selected fan setting to the total number of options for fan setting. For example, if 
a vehicle had seven fan setting options and was operated at the third strongest 
option, the fan setting was set to 3/7(or, = 0.43) in the models. Since AER was 
positively skewed, natural log transformed AER (lnAER) was used as the outcome in 
AER prediction models. For I/O ratios, which varied between 0 and 1, a logit 
transformation (the natural log of [I/O]/[1-(I/O)])  was used, often more appropriate for 
fractions. Predicted values on the original scales can be recovered using the 
equations AER = exp(LnAER) and I/O = exp(logitIO)/(1+exp(logitIO)).  

Multiple measurements of I/O and AER were performed in each vehicle at different 
speeds and/or ventilation settings and these repeated measurements were 
sometimes correlated. This correlation violates the assumption of completely 
independent observations in multiple linear regression (MLR) models, and MLR 
models fit to correlated data have unbiased regression coefficients but incorrect 
standard errors (14). To account for correlated observations, we present results from 
Generalized Estimating Equations (GEE) models (15) for continuous outcomes, with 
an exchangeable correlation structure and robust sandwich estimates of regression 
coefficient standard errors. MLR estimated regression coefficients were similar to 
those from GEE and are provided for comparison. Model fit was assessed by 
adjusted R2 and by leave-one-vehicle-out cross-validated adjusted R2, which 
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provides a more reliable estimate of the predictive ability of the same model fit to a 
new dataset containing information on different cars.  

All-subset MLR was used to identify the most important set of predictor variables. 
From this set, a parsimonious GEE model was developed that included all lower-
ordered terms of any interactions or squared variables, had high cross-validated 
adjusted R2, statistically significant predictor effects (α = 0.10), and satisfied linear 
model assumptions. For each model, significance of an indicator variable for Sydney 
data was also evaluated.  

5.2 RESULTS AND DISCUSSION 

5.2.1 In-vehicle-to-roadway concentration ratios 

The I/O ratios measured under RC conditions were far lower than those under OA 
conditions due to lower AERs under RC (13). The median I/O value at RC was 0.11 
(inter-quartile range: 0.07-0.22) compared to 0.66 at OA (inter-quartile range: 0.53-
0.80). The median AER value at RC was 6.0 h-1 (inter quartile range: 3.6-10 h-1) 
compared to 63 h-1 for OA (inter quartile range: 47-83 h-1). The maximum uncertainty 
associated with AERs was 7.5% and I/O ratio was 7 % (using root mean square 
error propagation accounting for both instrument accuracy and stability of continuous 
measurements for AER measurements and only the stability of continuous 
measurements for I/O.) Figure 5.1 shows the distributions of AER and I/O results 
and their transformed values, under both RC and OA ventilation mode. The 
measurements in Los Angeles and Sydney (10) have been differentiated in the sub-
figures.    

 
Figure 5.1:Distribution of Dependent Variables.  
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5.2.2 Predictive model for ln(AER) at RC and OA setting 

The GEE model gave the following Equations 5.1 and 5.2 for predicting lnAER under 
RC and OA condition, respectively. 

Equation 5.1:  ln(AER) under RC conditions 

𝒍𝒏(𝑨𝑬𝑹) =  𝟐.𝟕𝟗 +  (𝟎.𝟎𝟏𝟗 × 𝒔𝒑𝒆𝒆𝒅) + �𝟎.𝟎𝟏𝟓 × 𝒂𝒈𝒆 –  𝟑.𝟑 ×  𝟏𝟎−𝟑 𝒂𝒈𝒆𝟐�
+ �−𝟎.𝟎𝟐𝟑 × 𝒗𝒐𝒍 –  𝟔.𝟔 × 𝟏𝟎−𝟓 𝒗𝒐𝒍𝟐�+  𝑴𝒂𝒏𝒖𝒇 𝑨𝒅𝒋𝒖𝒔𝒕𝒎𝒆𝒏𝒕 

where the manufacturer adjustment is -0.71 for German vehicles and -0.39 for 
Japanese vehicles. If the speed is zero, a -0.51 factor should be added. 

Equation 5.2:  ln(AER) under OA conditions 

𝑙𝑛(𝐴𝐸𝑅) =  4.20 +  [(1.88 × 𝑓𝑎𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ) + (−0.92 × 𝑓𝑎𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ2)]
+ (0.0048 ×  𝑠𝑝𝑒𝑒𝑑) +  (−0.0073 × 𝑣𝑜𝑙) 

where the coefficients for fan strength and fan strength2 should be 0.40 and 0.13, 
respectively, at zero speed, and the speed term should be -0.32 at zero speed. 

GEE and MLR models for predicting AER were able to account for 68 % of the 
variability in observed AER under RC conditions and 79% under OA conditions. 
Cross validated R2 was 0.60 for RC conditions and 0.73 for OA conditions. The GEE 
confidence intervals can be seen to be roughly a third larger than MLR intervals 
(Tables 5.1 and 5.2). In all AER model runs, an indicator variable for Sydney data 
was not significant. 

Table 5.1: AER under RC Model Coefficients, Confidence Intervals, and P Values 
GEE Estimate Std.err Wald Pr(>|W|) Confidence Intervals 

     2.5% 97.5% 
Intercept 2.79 0.36 62 4.10E-15 2.1 1.1 

speed > 0 (miles h-1) 0.019 0.0013 223 < 2e-16 0.017 0.0038 
speed = 0 -0.51 0.12 19 1.60E-05 -0.75 0.36 
age (yr) 0.015 0.031 0.24 0.62 -0.046 0.092 

age2 (yr2) 0.0033 0.0017 4.0 0.045 -0.000032 0.0050 
vol  (ft3) -0.023 0.0049 21 4.00E-06 -0.033 0.015 
vol2 (ft6) 0.000066 0.000015 18 1.90E-05 0.000037 0.000044 

Manuf: Japan -0.39 0.12 11 0.00091 -0.63 0.36 
Manuf: Germany -0.71 0.25 8.1 0.0045 -1.2 0.74 

MLR Estimate Std. Error t value Pr(>|t|) Confidence Intervals 
     2.5% 97.5% 

Intercept 2.97 0.28 10.75 < 2e-16 2.43 3.52 
speed > 0 (miles h-1) 0.018 0.0020 8.93 < 2e-16 0.014 0.022 

speed = 0 -0.49 0.11 -4.34 2.00E-05 -0.71 -0.27 
age (yr) 0.010 0.019 0.53 0.59313 -0.027 0.047 

age2 (yr2) 0.0039 0.0011 3.67 0.00029 0.0018 0.0060 
vol (ft3) -0.025 0.0037 -6.77 6.80E-11 -0.032 -0.018 
vol2 (ft6) 0.000074 0.000013 5.69 3.00E-08 0.000048 0.000099 

Manuf: Japan -0.34 0.070 -4.86 1.90E-06 -0.48 -0.20 
Manuf: Germany -0.88 0.12 -7.26 3.30E-12 -1.11 -0.64 
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Table 5.2: AER under OA Model Coefficients, Confidence Intervals, and P Values 

GEE Estimate Std.err Wald Pr(>|W|) Confidence Intervals 
     2.5% 97.5% 

Intercept 4.2 0.24 295 < 2e-16 3.7 0.7 
fan strength 1.88 0.14 170 < 2e-16 1.6 0.43 
fan strength2 -0.92 0.11 70 < 2e-16 -1.1 0.33 

speed = 0 -0.32 0.09 11 0.0007 -0.50 0.28 
speed > 0 (miles h-1) 0.0048 0.0013 14 0.0002 0.0023 0.0038 

vol (ft3) -0.0073 0.0019 15 0.0001 -0.011 0.0056 
fan strength at speed = 0 0.40 0.26 2.5 0.12 -0.10 0.76 
fan strength2 at speed = 0 0.13 0.20 0.45 0.50 -0.26 0.59 

MLR Estimate Std. Error t value Pr(>|t|) Confidence Intervals 
     2.5% 97.5% 

Intercept 4.2 0.14 29 < 2e-16 3.9 4.5 
fan strength 2.3 0.40 5.7 0 1.5 3.1 
fan strength2 -1.3 0.36 -3.7 0.00040 -2.1 -0.61 

speed = 0 -0.34 0.15 -2.3 0.023 -0.63 -0.047 
speed > 0 (miles h-1) 0.0043 0.0014 3.0 0.0028 0.0015 0.0071 

vol (ft3) -0.0074 0.00080 -8.8 0 -0.0090 -0.0057 
fan strength at  speed = 0 0.077 0.56 0.14 0.89 -1.0 1.2 
fan strength2 at speed = 0 0.45 0.49 0.91 0.36 -0.5 1.4 

 

The predicted AER under RC conditions is plotted against the two most significant 
determinants of AER, speed and age, in Figure 5.2 (a). Model results suggest that 
an 11 year old vehicle (~ 75th age percentile) has an AER that is about 1.5 times 
higher than that of a 4 year old vehicle (~25th age percentile). Furthermore, AER 
during typical freeway driving speed (65 miles h-1) is expected to be 1.8 times higher 
than under typical arterial driving conditions (35 miles h-1).  

 

 

Figure 5.2: Predicted values for lnAER plotted against the two most significant 
variables under RC and OA ventilation modes 
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The two surfaces plotted in 2 (a) represent the extremes of other model inputs under 
RC conditions: a U.S. manufactured sub-compact vehicle (85 ft3 cabin) and a 
German manufactured large vehicle (120 ft3 cabin),  the range of AER variation that 
can be expected due to manufacturer and volume. A U.S. manufacturer’s vehicle is 
expected to have an AER nearly 50% higher than a Japanese vehicle and about 
twice as high as a German manufactured vehicle, for given cabin volume, age and 
speed. It is interesting that cabin volume was found to be negatively correlated with 
AER when expressed in units of air changes per hour under RC conditions (Similar 
relationship was found with I/O, discussed in following section). For example, an 85 
ft3 vehicle is expected to have an AER, which is 2.2 times that in a 120 ft3 vehicle (or 
1.6 times higher if AER units are ft3 h-1). To provide a typical AER value under RC 
conditions for reference, a seven-year-old vehicle (50th age percentile, U.S. 
manufactured, and 110 ft3 , the average U.S. fleet cabin volume) would have an AER 
of 3.7 h-1 at 35 miles h-1 and 6.7 h-1  at 65 miles h-1.  

Under OA conditions, fan strength explained the most variability in lnAER, followed 
by speed. For example, increasing the fan setting from low (0.25) to medium (0.5) to 
highest (1.0) increased the AER by a factor of 1.3 and 1.7, respectively. In 
comparison, increasing the driving speed, the second most significant variable, from 
arterial to freeway speeds only increased the AER by 1.2. Vehicle cabin volume was 
also found to be significant, with higher volume vehicles having lower predicted AER 
(h-1). An 85 ft3 sub-compact vehicle had 1.3 times higher AER than a 120 ft3 large 
sedan. Fan strength and zero speed interaction terms, while not significant 
individually, were significant as a pair, so included in the OA model.     

Figure 5.2 (b) above shows the model predictions plotted against the two most 
significant determinants of AER under OA conditions; ventilation fan strength and 
vehicle speed, for a sub-compact (85 ft3 ) and large sedan vehicle (120 ft3), thus 
capturing the full range of AERs that can be expected under OA condition. For the 
previously mentioned reference vehicle travelling at 35 and 65 miles h-1, AER would 
be 72 h-1 and 83 h-1, respectively, at the middle fan setting, roughly an order of 
magnitude higher than under RC conditions. 

 

5.2.3 Predictive model for logit(I/O) under RC and OA setting 

I/O UFP number concentration ratios under both ventilation conditions were modeled 
together, using a binary indicator variable for RC setting, (i.e., variable RC = 1 under 
RC setting and zero otherwise). The resultant Equations 5.3 and 5.4 from the GEE 
model for predicting I/O under RC and OA conditions are as follows: 
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Equation 5.3: Logit(I/O) under RC conditions 

logit(𝐼/𝑂)
=  −(0.29 + 2.93)  + 0.54 × 𝑓𝑎𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ +  0.025 × 𝑠𝑝𝑒𝑒𝑑 
+ (0.017 + 0.086)  × 𝑎𝑔𝑒 

Equation 5.4: Logit(I/O) under OA conditions  

logit(𝐼/𝑂) =  −0.29 + 0.54 × 𝑓𝑎𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ� +  0.025 × 𝑠𝑝𝑒𝑒𝑑 + 0.017 × 𝑎𝑔𝑒 

The GEE coefficients, confidence intervals and p values are listed in Table 5.3. GEE 
models required only vehicle age, speed and ventilation fan strength to account 79 
% of the variability in I/O across RC and OA conditions. Cross validated R2 was 0.76. 
The indicator variable for Sydney was significant for the I/O modeling, but did not 
appreciably change the results. Therefore, this variable was omitted in the final 
model since that factor would not be useful to other users of the model.  

Figure 5.3 (a) shows the full range of I/O that can be expected in vehicles up to 20 
years old and travelling at speeds up to 75 miles h-1, age and speed being the most 
important predictors. Under RC ventilation conditions, I/O can be expected to vary 
from less than 0.1 to nearly 0.8 in the leakiest cars (old and travelling at high 
speeds). The two surfaces mark the upper (full fan) and lower limits (low fan setting, 
equal to 0.33) of variation that can be expected due to the third most significant 
variable, fan strength. Under RC conditions, fan setting was relatively unimportant. 
For the entire range of age/speed plotted in Figure 5.3 (a), fan strength made an 
average difference of only 0.07 ± 0.02 in I/O ratio. 

 
Table 5.3: I/O GEE Model Coefficients, confidence intervals and p-values. 

GEE Model 
 Estimate  Std.err Wald Pr(>|W|) Confidence Intervals 
     2.5% 97.5% 
Intercept -0.29 0.19 2.4 1.20E-01 -0.65 0.078 
fan strength 0.54 0.21 6.8 9.10E-03 0.14 0.95 
speed (miles h-1) 0.025 0.0028 81 < 2E-16 0.019 0.030 
age (yr) 0.017 0.02 0.84 3.60E-01 -0.020 0.055 
RC   -2.95 0.14 468 < 2E-16 -3.2 -2.7 
RC X age (yr) 0.086 0.019 20 7.00E-06 0.048 0.12 

MLR Model 
 Estimate  Std.err Wald Pr(>|W|) Confidence Intervals 
     2.5% 97.5% 
Intercept -0.31 0.14 -2.2 3.30E-02 -0.59 -0.026 
fan strength 0.30 0.17 1.8 7.40E-02 -0.029 0.62 
speed  (miles h-1) 0.033 0.0027 12 < 2e-16 0.028 0.039 
age (yr) 0.042 0.011 3.9 1.30E-04 0.021 0.063 
RC   -2.93 0.13 -22 < 2e-16 -3.19 -2.67 
RC X age (yr) 0.06 0.02 3.9 1.30E-04 0.031 0.093 
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Figure 5.3:Predicted values for I/O under RC and OA ventilation mode versus two 
most important model variables for each mode. Bottom subsets show actual 
measurements versus surface of median model predictions. 

 

In contrast, under OA conditions, I/O ratios were most strongly dependent on vehicle 
speed and fan speed. I/O ratios were higher but had a smaller range compared to 
RC conditions, varying from 0.5 – 0.9 (Figure 5.3 (b)). The plotted surfaces in Figure 
5.3 (b) mark the lower (25th age percentile) and upper bounds (75th age percentile) of 
predicted I/O due to variation in the third variable, vehicle age, though the distinction 
is barely discernible. Age (by itself) under OA was not significant and made a 
maximum difference of 0.03 in I/O ratios predicted using Equation 4.  The lower 
subset figures show measured I/O ratios plotted along with median predicted surface 
to show modeled data fit.  

We performed a sensitivity analysis based on maximum expected variable 
measurement uncertainty: 5 miles h-1 uncertainty in speed, 1 year in vehicle age, 
and a 10% uncertainty in fan speed based on fraction of maximum. These 
uncertainties led to 8.0, 5.6, and 3.4% difference in I/O ratio, respectively. These 
relatively modest changes reflect maximum uncertainties. Typical uncertainties 
would tend to be smaller, and since independent, would tend to cancel each other 
out (i.e., they are just as likely to be positive as negative). However, the model 
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predictions may be less accurate for vehicles older than 15 years and at speeds 
exceeding 60 miles h-1 due to limited coverage of measured data for such conditions. 

We also assessed the sensitivity of our findings regarding the generalizability of our 
observed model fit by implementing a modified version of approximately 10-fold 
cross-validation. For each model, we first determined the number of cars contributing 
data to the estimation of the model (AER under RC conditions: 308 measurements 
from 70 cars, AER under OA conditions: 144 measurements from 16 cars, and I/O 
ratios under RC and OA conditions: 241 measurements from 42 cars). For the AER 
under RC conditions model, we randomly partitioned the data into 10 subsets of data 
from 7 cars, and then successively fit the model to 9 of 10 subsets and used this 
model to predict the outcome in the 10th hold-out subset of 7 cars. Finally, the 
adjusted R2 was calculated using these predictions. Since the partitioning into 10 
subsets of 7 cars was not unique, we performed the modified 10-fold cross-validation 
10 times to get a sense of the variability in the estimate of the modified 10-fold cross-
validation adjusted R2. We report the minimum, mean and max of these 10 values 
below. Since the number of cars in the other two models was not divisible by 10, we 
chose to use a modified 8-fold and 7-fold cross-validation in the AER under OA and 
I/O ratios under OA and RC condition models, respectively.  

The leave-one-car-out value was similar to the mean value from the approximately 
10-fold approach. In the adjusted R2 calculated using all data is somewhat larger 
than we would expect in a new dataset because the leave-one-car out cross-
validated value of adjusted R2 was smaller than the value calculated using all data. 
However, the adjusted R2 we would expect in a new dataset is still good, providing 
evidence that our models did not greatly overfit to the observed data. 

 

Log(AER) under RC conditions:  
Adjusted R2 from GEE models: 
All data Leave 1 car out 

CV 
10 fold CV - 
Min 

10 fold CV - 
Mean 

10 fold CV - 
Max 

0.6773 0.6039 0.5700 0.593 0.628 

 

Log(AER) under OA conditions:  
Adjusted R2 from GEE models: 
All data Leave 1 car out 

CV 
8 fold CV - 
Min 

8 fold CV - 
Mean 

8 fold CV - 
Max 

0.792 0.729 0.694 0.723 0.747 
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Logit(IO) combined model for OA 
Adjusted R2 from GEE models: 
All data Leave 1 car out 

CV 
7 fold CV - 
Min 

7 fold CV - 
Mean 

7 fold CV - 
Max 

0.789 0.762 0.754 0.764 0.774 

5.2.4. Fleet-wide distributions of AER and I/O 

To calculate individual in-vehicle UFP exposures, the models presented in previous 
sections for prediction of AER and I/O require six inputs: (a) ventilation setting; (b) 
fan setting; (c) manufacturer; (d) vehicle age; (e) speed; and (f) vehicle volume. For 
conducting a large epidemiological study, these variables can be gathered directly 
through a questionnaire or generated from vehicle-related information like age, 
vehicle identification number (which holds information on model, make and 
manufacturer), and driving/trip related information like ventilation setting choice, fan 
setting, and trip time and destination.  

To calculate population-size distributions of in-vehicle UFP exposure, the distribution 
of predicted AER and I/O ratios in a fleet of vehicles can be computed if required 
input variable distributions for the fleet are known. As an example, probability 
distributions for AER and I/O (predicted using Equations 5.1, 5.2, 5.3 and 5.4) were 
computed for a fleet of sedan type vehicles using input distributions based on the 
U.S. fleet.  

Vehicles were divided into three categories based on average cabin volume for three 
size categories:  compact (99 ft3), mid-size (112 ft3) or full-size (135 ft3). The 
frequency of each size was determined from the fraction of passenger cars in each 
volume category for the years 1990-2010 (16).  For fan setting, it was arbitrarily 
assumed that an equal fraction of vehicles were being driven at three fan settings, 
low (fan setting = 0.33), medium (0.67) and highest (1.0).  The current fractions of 
manufacturer share were used: (44.5% U.S., 42% Japanese and 13.5% 
German/other).  For age and speed, EPA Motor Vehicle Emission Simulator 
(MOVES) default age and speed inputs for gasoline passenger cars were used (17). 
Different speed distributions were used for arterial and collector roads and freeway 
and its ramps, which also varied with respect to time of day (i.e., rush hour or non-
rush hour). The weighted average speeds were 33 and 37 miles h-1, respectively, for 
arterial roads during rush hours and non-rush hours, and 45 and 55 miles h-1, 
respectively, for freeways during rush and non-rush hours. Further details on all 
these input distributions have been presented in the Figures 5.4-5.6 and Table 5.5 
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Figure 5.4: Distribution of passenger cars in various volume-based size classes 

 
Figure 5.5: Age distribution of US passenger car fleet and comparison with study fleet 
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Figure 5.6: Typical distribution of driving speed on urban freeways and arterial roads 
during congested or peak and not congested or off-peak traffic conditions. 

 
 

Table 5.4: Manufacturer share of the vehicles in operation in U.S. 

 

Manufacturer % of vehicle 
currently in 
operation 

Manufacturer % of vehicle 
currently in 
operation 

Ford 20 Hyundai 2.9 

GM 28.5 Honda 8.1 

Chrysler 12.8 Nissan 5.3 

Toyota 11.8 Other 10.6 

 

The fractions of vehicles having a specific AER or I/O are plotted in Figure 5.7 for 
both ventilation choices (RC and OA). Several important observations can be made 
from Figure 5.7. First and foremost, though roadway type and associated speed 
differences affect AER and I/O, the most significant difference occurs due to 
ventilation setting choice. Under RC conditions, 80% of the fleet is expected to have 
I/O ratio between 0.15 and 0.5—significant protection—under all road types and 
speeds, but for OA conditions, 80% all vehicles are expected to have I/O ratios from 
0.65 to 0.85, only moderately reduced concentrations. Looked at another way, under 
RC conditions, the fraction of vehicle fleet that will experience cabin concentrations 
lower than half of on-road concentrations exceeds 80%, but virtually none of the fleet 
is expected to have I/O ratios less than 0.5 under OA conditions. Furthermore, the 
difference between rush hour and non-rush hour speed distributions leads to a far 
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more significant difference in AER and I/O distribution for freeway driving than 
arterial driving. 

5.2.5 Expected in-cabin concentrations for given roadway concentrations 

The ultimate goal of generating predictive models for I/O is to be able to predict in-
cabin concentrations from roadway concentrations (calculated as Concentrationin-cabin 
= I/O x Concentrationroadway). To illustrate, representative probability distributions of 
UFP concentrations were generated from 10 hours of sampling on arterial and 12 
hours of sampling on Los Angeles freeways and are shown in Figure 5.8.  In turn, 
these distributions were joined in a Monte Carlo-type sampling method with the I/O 
distributions in Figure 5.7 to generate distributions of UFP concentrations inside the 
U.S. vehicle fleet if driven on Los Angeles roads.   

 

 
Figure 5.7:Distribution for AER and I/O for a fleet similar to U.S. passenger car fleet in 
terms of manufacturer’s market share, vehicle volume and age. 
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Figure 5.8:Expected in-cabin concentration for U.S. vehicle fleet travelling on Los 
Angeles arterial roads and freeway  

Comparison of the measured roadway concentrations and the predicted in-cabin 
concentrations under RC and OA conditions shown in Figure 5.8 suggests that for 
the range of fleet vehicle characteristics such as age and mileage (e.g., 25th to 75th 
percentile differences for a ventilation setting and road type), we would expect a two 
to three-fold range in in-vehicle UFP exposures, while the differences due to 
ventilation mode selection alone for a given vehicle on either road type was larger, 
with factors ranging from two to four. The increase in speed going from arterial to 
freeway speeds, however, along with increase in on-road concentrations on 
freeways, only increased in-vehicle UFP exposure for a given vehicle at either 
ventilation mode by a factor of 1.5. Overall, while ventilation choice is still the 
dominant factor, it is interesting that once the variability of on-road UFP 
concentrations are taken into account, the spread of in-vehicle UFP concentrations 
between RC and OA conditions overlaps, unlike the spread of I/O distributions. 

5.3. SUMMARY AND CONCLUSIONS 

Models have been presented for predicting UFP in-vehicle to roadway concentration 
ratios (I/O) based on simple driving preferences and vehicle characteristics. 
Scalability of these models was demonstrated at a fleet-wide level and in dynamic 
roadway environments. In general, factors that increase air exchange rates (AER) 
increase UFP I/O. Age was significant and positively correlated with both AER and 
I/O under recirculation ventilation setting (RC), but age was not significant under 
fresh air intake setting (OA). Under OA conditions, fan strength was also a strong 
determinant and positively correlated with I/O ratio. Under both ventilation settings, 
an increase in vehicle volume decreased I/O. Overall, combining these results with 
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on road UFP concentration distributions measured on Los Angeles roadways, in-
cabin UFP exposure concentrations during freeway driving were up to 1.5 times that 
of arterial driving, but the switch from OA ventilation condition to RC dropped the in-
vehicle concentration on either road type two to four fold.  

This chapter presented results that were the capstone of the work presented in 
Chapters 2 and 3. Accurate assessment of risk posed by ultrafine exposure will 
depend on the ability to characterize exposure in microenvironments like that in-
vehicle where peak and disproportionate exposures occur frequently for large 
sections of the population. A novel contribution of this study is the empirical model 
for predicting AER and UFP I/O ratios. This work makes it possible for exposure 
scientists or epidemiologists to predict drive-time UFP exposure based on estimated 
on-road concentrations and the collection of survey data regarding the 
characteristics of vehicles used by the study population. The use of these prediction 
models would bypass the reliance on time-consuming measurements and 
mechanistic models (such as those described above), which are unfeasible in an 
epidemiologic study, and makes it possible to generate predictions for large cohorts 
based on simple information such as vehicle make, age and ventilation choice. 

These results of the present chapter were be used in work presented in Chapter 5 – 
Part II to develop predictive models for exposure.  
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CHAPTER FIVE, PART II.  DEVELOP AND VALIDATE THE ON-ROAD 
EXPOSURE MODELS FOR PARTICLE-BOUNDED PAH, PNC, PM2.5, NOX, AND 
BC  (based on Task 4: Develop and validate in-vehicle exposure models for BC, UFP 
number, PM2.5, particle-bounded PAH, and NOx.) 

5.4. INTRODUCTION  

In the following work we used measurements of on-road air pollutants acquired by 
USC during work to accomplish the above Tasks 1-3.  Models to predict in-vehicle 
UFP particle number concentration (PNC) (also part of Task 4) were presented 
above (Part I of Chapter Five).  Those results and the present results were used to 
help develop the predictive model for Task 5 in the next section for in-vehicle 
personal PAH collected by study subjects.  No other in-vehicle data were collected 
for BC, NOx or PM2.5 and therefore, in-vehicle models cannot be developed for these 
pollutants.  Due to these limits in the data collected, we focus herein on the 
development of predictive models for on-road BC, PAH, PNC, PM2.5 and NOx.  The 
purpose is to provide on-road models to predict air pollutants that could be combined 
with the models developed in Tasks 1-2 for AER to then predict in-vehicle exposures 
in human subjects.  No models were developed for CO and CO2 since they are 
generally not of primary interest in epidemiologic research. Although CO can be a 
marker of fossil fuel combustion, the measurements selected are believed to be 
more directly representative of pollutant components involved in oxidative stress, 
inflammation and damage to macromolecules and other cell constituents.   

The primary goal of Tasks 4-5 is to predict exposures of human subjects while in 
vehicles.  We start this effort here with the prediction of on-road concentrations.  
Characterization data useful in predicting in-vehicle exposure to PN was presented 
in Tasks 1-3, such as AER for a given OA and RC setting (OA refers to the time 
when the car's ventilation system injects fresh Outside Air into the vehicle; RC refers 
to the time when the car's ventilation system ReCirculates the air with the vehicle 
cabin). In Tasks 4-5 we are not aiming to perform a detailed characterization of the 
complex dynamics of exposure.  This is because some variables used in the above 
characterization (e.g., real-time OA and RC) would typically not be available in an 
epidemiologic study.   

Human exposure prediction data would be averaged over long periods as compared 
with the real-time nature of the characterization data.  Nevertheless, given the 
amount of data available and on model fit, we chose one-minute average air 
pollutant concentration and also tested its temporal autocorrelation.  The modeling 
effort included statistical analyses of many serially-correlated predictors and used an 
approach that incorporates predictors of on-road pollutant concentrations anticipated 
to be available for exposure models in epidemiologic studies.  For in-vehicle human 
exposures, this on-road data would be combined with the detailed characterization 
data already discussed (vehicle type and age, AER based on OA and RC condition, 
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etc.).  An initial limited effort in Task 5 makes this union of on-road exposure 
predictors with subject-reported in-vehicle conditions based in part on findings using 
Task 1-3 characterization data.  

For the development and validation of the predictive models for on-road pollutants, 
we first conducted an exploratory data analysis to obtain a normal transform function 
for the air pollutant data, and then performed initial screening of the predictor 
variables and the linear or non-linear relationship between them and the on-road air 
pollutant concentrations.  Finally, we built linear regression models and non-linear 
generalized additive models to explore the influence of predictor variables and 
modeling methods. We also constructed the models with incorporation of temporal 
autocorrelation.  Using cross validations and independent holdout tests, we tested 
the effects of predictor variables, modeling methods and temporal autocorrelation for 
the prediction of on-road air pollutant concentrations.   

5.5. MATERIALS  

The study domain mainly covered most of several major freeways, partial arterials 
and local roads (Figure 5.9).   

 

Figure 5.9: Routes of on-road pollutant measurements from Task 4 
 

5.5.1 Mobile Measurement Platform and Concentrations Measured  

Vehicle information such as vehicle type, age, model, production and speed are 
important for in-vehicle concentrations.  However, our concentrations were 
measured on-road using one 2010 Honda Insight hybrid vehicle.  This was selected 
as a mobile measurement platform due to its limited level of self-pollution, which is 
more relevant for in-vehicle air pollutant concentrations.  
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On-road pollutant measurements were obtained from the USC field work for five air 
pollutants (PAH, PNC, PM2.5, NOx and BC).  We averaged the original data at 10-
second intervals to one-minute averages for model development. Figure 5.9 
represents the routes for USC’s measurements of pollutant concentrations.  Most 
measurements were performed on freeways (over 60% of the data).  

5.5.2  Road and Traffic Classification  

We compiled a comprehensive traffic database for freeways in the study region 
based on both 5 minute total traffic measurements and estimated truck counts. Five-
minute total traffic counts and estimated hourly truck counts were based on 
aggregated count and occupancy data for freeways and highways during the study 
period and were obtained from the California Department of Transportation 
(Caltrans) Performance Measurement System (PeMS) (http://pems.dot.ca.gov/).  
The PeMS data provided a high temporal resolution; however, they were limited by 
spatial coverage (mostly freeways and highways), limited sampling sites, and 
sometimes missing data probably due to malfunction of detectors.  

Methods were developed in Geographical Information System (GIS) using ArcGIS 
v10.0 (ESRI, Redland, CA) and PostGIS v1.5 (Refractions Research, British 
Columbia, Canada) software to assign traffic volume data to roadway segments, 
map GPS-based on-road measurement data, and classify GPS data into different 
categories based on roadway type and traffic volumes. Five-minute total traffic and 
hourly estimated truck counts at Caltrans sampling locations were linked and 
assigned to adjacent roadway segments (within 5 km along the roadway) with 
matching names.  Although we extended the PeMS point measurements to 1 km 
along the roadway, corresponding to the measurement time of on-road 
concentrations, the PeMS data only covered 66.5% (in length) of the freeways and 
highways of the routes in this task.   

To overcome the limitations in the PeMS data, we also obtained the annual average 
daily traffic (AADT) count data from the Caltrans, which had continuous coverage for 
all freeway/highway and major arterial segments. The AADT dataset was produced 
by Caltrans staff based on a combination of measurements (e.g. continuous 
measurements on freeways and highways and tri-annual measurements on surface 
streets) and modeled values.     

5.5.3 Meteorological Parameters 

We obtained meteorological data from both on-road measurements and from the 
nearest weather monitoring stations operated by National Weather Service and 
South Coast Air Management District.  The on-road measurements of temperature 
(dew point and wet bulb) and humidity were collected simultaneously with pollutant 
measures and at the same temporal resolution (every ten seconds).  Hourly 
temperature, relative humidity, and wind (wind speed and direction) were obtained 
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from meteorological monitoring stations.  The shortest distance was used to assign 
the monitoring station data to each GPS point.  In addition to the surface 
meteorological data, we obtained Pasquill atmospheric stability class data every 
three hours at approximately 40 km by 40 km spatial resolution during each sampling 
period from the National Oceanic and Atmospheric Administration (NOAA) AIR 
Resources Laboratory archive of the Eta 4-D Data Assimilation System (EDAS) 
(http://www.arl.noaa.gov/ready.html).  For each GPS point, we assigned the 
atmospheric stability from the nearest modeling grid and time. We classified stability 
classes E, F and G as stable, whereas classes A, B, C, and D were classified as 
unstable and neutral.  Stable atmospheric condition is usually associated with lower 
mixing height and higher pollutant concentrations in the atmosphere than unstable 
conditions.   

5.5.4 Independent and Dependent Variables 

The following variables were used to construct on-road exposure models. 

Dependent variables: on-road pollutant concentrations of particle-bound PAH 
(ng/m3), UFP particle number concentration (PNC, number of particles/cm3), 
PM2.5 (g/m3), NOx (ppbv) and black carbon (BC, ng/m3, measured at 30 
second averaging time).  We used raw, natural log, or square root 
transformed pollutant concentrations averaged over one minute.  

Independent variables: 

(1). Roadway type: categorical variable (merging to freeways, freeways, major 
arterials, and minor surface streets or local roads).  Both the USC roadway 
classification and ESRI street data were used to classify roadway type.  In 
the ESRI data, A2x refers to primary roads without limited access, non-
interstate roads (A2); A3x refers to smaller, secondary or connecting roads, 
usually with more than two lanes, and A4 refers to local, neighborhood and 
rural roads, usually with a single lane of traffic in each direction.  We 
classified A1x-A2x as freeways/highways, A3x as major arterials and A4x as 
local roads.  

(2). Vehicle speed of the mobile measurement platform: continuous independent 
variable (miles/hour).   

(3). PeMS total traffic counts: continuous variable averaged by selected roadway 
segments. The data were limited both spatially and temporally by the 
available PeMS sampling sites as we described above. 

(4). Diesel truck counts: continuous variable averaged by selected roadway 
segments. Limited only to certain freeways and highways.  

(5). On-road temperature: including dew point and wet bulb (Celsius, ℃).  
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(6). Ambient temperature: continuous variable averaged over selected periods 
from the nearest meteorological site (Celsius, ℃).  

(7). Ambient wind speed and direction: wind speed (WS, meters/second, 
abbreviated as m/s) and direction (WD) from the nearest meteorological site.  
They were also used as categorical variables. Wind speed was classified 
into five types: calm condition referred to wind speed lower than 1 m/s; light 
wind’s speed was between 1 m/s and 3 m/s; moderate wind’s speed was 
between 3 m/s and 5 m/s; strong wind’s speed was between 5 m/s and 8 
m/s; high wind speed was greater than 8 m/s.  Wind directions were 
classified into four types: north-east (0-90o), north-west (90o-180o), south-
west (180o-270o) and south-east (270o-360o).  We also combined wind 
speed and wind direction according to their classifications (20 combinations 
of five levels of wind speeds by four types of wind directions).    

(8). On-road relative humidity: continuous variable averaged over selected periods 
(%).  

(9). Ambient relative humidity: continuous variable averaged by selected periods 
from the nearest meteorological site (%).  

(10). Atmospheric stability from the nearest EDAS modeling grid.  There are 7 
levels from unstable to stable situation: A-Extremely unstable conditions; B: 
Moderately unstable conditions; C: Slightly unstable conditions; D: Neutral 
conditions; E: Slightly stable conditions; F: Moderately stable conditions; G: 
Extremely Stable. We combined A-D as unstable to neutral and E-G as 
stable as described above. 

(11). AADT and VMT_AADT: AADT is annual average daily traffic counts 
estimated by CalTrans.  Vehicle miles travelled AADT (VMT_AADT) was 
derived by multiplying AADT by road length within 500 m of a measurement 
point.  

(12). Day period: categorical variable. The classification was done as: early 
morning: 12:0am - 06:00am; morning rush hour: 06:00am - 09:00am; mid 
morning: 09:00am -12:00pm; noon: 12:00pm - 02:00pm; afternoon: 02:00pm 
- 05:00pm; evening rush hour: 04:00pm - 07:00pm; night: 07:01pm -12:00pm.  

(13). Lanes: This is the number of lanes at a measurement site from the Caltrans 
data.  

(14). Lagged variable of vehicle speed and GPS_leg_length from one minute to 
ten minutes corresponding to the time of pollutant concentration 
measurement. GPS_leg_length was defined as the distance traveled in 1 
sec or distance traveled in X seconds if GPS was recording at every X 
second.       
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5.6. METHODS   

There were five steps in the construction of predictive models of on-road 
concentrations of air pollutants.  First, exploratory data analysis was used to produce 
summary statistics and correlation analyses.  Box and scatter plots were used to 
detect outliers and initial relationships between dependent and independent 
variables and to decide upon grouping statistics.  Second, significant predictors were 
selected according to initial screening with correlation analyses and scatter plots and 
then further selected according to the variance inflation factor (VIF) and statistical 
significance.  Third, we selected variables and constructed the models using linear 
regression with categorical variables (factors) and generalized additive model (GAM) 
regression with linear variables and categorical factors.  Fourth, serial residuals from 
the linear models were examined to check whether there was statistically significant 
temporal autocorrelation among residual errors.  If statistically significant, 
autocorrelation factors were used to adjust the bias in prediction.  Fifth, we used 
independent holdout validation using 2/3 of the data as training data and 1/3 of the 
data as test data and 3-time x 3-fold cross validation to test the general linear and 
generalized additive models.  For linear and GAM models, 2/3 of measurement data 
were used to train the models, but for models adjusted for autocorrelation, 3/4 of 
measurement  data were used to train the models.  The remaining part of the data 
were used to test the model for validation purposes (holdout data). 

We constructed the spatial database with concentrations, relevant independent 
variables and corresponding GPS coordinates using POSTGIS 1.5 (Refractions 
Research, British Columbia, Canada) and used R 2.11.1(Bell Laboratories, New 
Jersey, USA) to conduct exploratory data analysis, construct the statistical models, 
and validate the models.    

5.6.1 Exploratory Data Analysis     

Exploratory data analysis is an initial analysis to evaluate the summary statistics 
across different groups as well as correlations, to find a suitable transform for a 
normally distribution dependent variable, to identify possible outliers, etc.  We have 
conducted the following nine operations below:     

(1).Summary statistics: to give an initial evaluation of the measured concentrations 
of PAH, PNC, PM2.5 and NOx.  

(2).Box plots and identification of outliers.  
(3).Histogram of the original data and transformed variables.     
(4).Correlation analysis and scatter plots.  Pearson and Spearman’s correlations 

were used to evaluate the correlations between variables.  
(5).Lagged correlation analysis.  Some covariates such as vehicle speed may 

have a lagged relation to pollutant average concentrations (1).  Therefore, 
lagged correlation analysis was necessary to detect the potential relationship 
between the pollutant concentration and the lagged variable.   
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(6).Grouping statistics by roadway type.  There are four types of roads, namely, 
local roads, arterial roads, single freeway, and merging freeways. Roadway 
type is expected to be important for concentrations of traffic-related air 
pollutants.  We present summary statistics across four roadway types and 
explored the changes in their distributions across roadway types.  

(7).Grouping statistics by time of day.  Time of day is a categorical variable that 
includes seven categories, i.e. early morning, morning rush hour, mid morning, 
noon, afternoon, evening rush hour and night.  We examined the changes of 
concentrations by time of day.  

(8).Grouping statistics by stability.  More stable atmospheric conditions are usually 
associated with higher pollutant concentrations than unstable conditions.  We 
examined the influence of atmospheric stability on pollutant concentrations 
using grouping statistics of concentrations based on the two combined levels 
of atmospheric stability (A-D as one group for unstable and neutral conditions 
and E-G as another group for stable conditions).  

(9).Student t and Wilcox statistics were used to compare the differences in 
concentrations across two different groups of samples: freeways vs. non-
freeways, morning vs. non-morning, and stable atmospheric stability vs. 
unstable atmospheric stability.  

Due to the limited amount of measurement data, some variables such as summer vs. 
winter seasons, weekdays vs. weekends could not be examined in the models.   

5.6.2 Selection of Predictor variables 

Correlation analysis was used as the first step for variable screening. A variable was 
dropped from further analysis if the absolute value of its Pearson and Spearman’s 
correlation with measured air pollutant concentrations were less than 0.1 with their 
scatter plots showing no obvious or regular patterns.  

Then, we checked the multi-collinearity of independent variables and their statistical 
significance.  First, to avoid multi-collinearity, we used variance inflation factors (VIFs) 
to help divide the covariates into several groups as follows:  

1) one group of weakly correlated covariates (VIF<10);   

and the following 3 groups of remaining highly correlated covariates (VIF≥10)  

2) a traffic group, including traffic count, truck count, lanes, freeways and AADT; 
vehicle characteristic group including vehicle speed, gps_leg_length;  

3) a meteorological group, including on-road dew point, wet bulb, humility, ambient 
temperature, ambient humility and atmospheric stability; and  

4) a temporal group, including hour, day time, weekday/weekend and season etc.).  
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We selected one variable from each group of the highly correlated covariates at a 
time and combined them with all the weakly correlated covariates to construct a 
combination of covariates for the prediction model.  All of the variables were tested in 
the model.  Then, Akaike’s information criterion (AIC) or R2 was used to further 
backward-select the variables in each combination: the covariates with p values ≥0.1 
were removed until R2 remained the same, improved, or decreased least when all 
possible combinations of the remaining covariates were considered. Finally, the 
covariate combination with the maximum R2 or minimum AIC was selected as 
optimal input in the model.  If the VIFs of all the independent variables were smaller 
than 10, we would select those with statistical significance (p < 0.1).   

5.6.3 General Linear and Non-Linear Models with Inclusion of Factor Variables 

5.6.3.1  Basic model: linear regression with factor variables  

Our independent variables include both continuous variables such as vehicle speed, 
ambient temperature, and on-road dew point, as well as categorical variables such 
as roadway type, time of day, and atmospheric stability etc.  Linear regression with 
factor variables is the most basic prediction regression model that was often used to 
predict the concentrations (2-8). Given a data set 
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of n statistical units with p continuous 

variables (such as vehicle speed, wind speed, on-road dew point, ambient 
temperature) and m categorical variables as factors (such as roadway type, time of 
day, and atmospheric stability), we assumed for the linear regression model that the 
relationship between the dependent variable yi (air pollutant concentration) and the p 
predictor variables xi (i=1,…,p) is linear.  In our model, each categorical variable as a 
factor, was transformed into multiple continuous dummy variables with a value of 0 
or 1 indicating their status.  In the linear model, these transformed multiple dummy 
variables were also assumed to be linearly related to the target variable, yi 
(concentration).  This relationship is modeled through a so-called “disturbance term”.  
εi  is an unobserved random variable that describes the random error to the linear 
relationship between the dependent variable and predictor variables.  

       Equation 5.5  
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In practice, we used the least squares approach to fit the linear regression models.     

5.6.3.2 Non-linear model: generalized additive model with factor variables    

Generalized additive model (GAM) can incorporate both linear and factor variables. 
The model specifies a distribution (such as a normal distribution, or a binomial 
distribution) of the dependent variable and a link function, g relating the expected 
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value of the distribution to the m predictor variables, and attempts to fit functions fi(xi) 
to satisfy:  

       Equation 5.6  
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where uµ̂ is the estimate of the expected value of concentration at the location, u 

( )(ˆ uyEu =µ ), â0 is the model’s intercept, i
ux , j
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among which , i
ux  is q continuous variables with non-linear relationships, j

ux  is p 

continuous variables with linear relationship and k
ux  is k categorical variables as 

factors.  fi(…) is the non-parameter smooth function used to construct the non-linear 

relationship between i
ux  and g( uµ̂ ), df is degrees of freedom that controls the smooth 

degree of the curve fit, âi are the linear parameters used to construct the linear 

relationship between j
ux  and g( uµ̂ ), and g(…) is the link function of expected value 

and the independent variables.  For normally distributed air pollutants, the link 

function is uug µµ ˆ)ˆ( = .  Similarly, in GAM, each categorical variable (e.g. roadway 

type, time of day and atmospheric stability), as a factor, would be transformed into 
multiple continuous dummy variables with a value of 0 or 1 indicating their status and 
each of these transformed multiple dummy variables is also assumed to be linearly 

relative with concentration. ε  is the random error term ),0( 2σε N∈    

The functions fi(xi) may be fit using parametric or non-parametric means, thus 
providing the potential for a better model fits to the data than other methods. The 
method hence is general – a typical GAM might use a scatterplot smoothing function 
such as a locally weighted mean for f1(x1) to model the non-linear relationship such 
as between ambient temperature and concentration of PM2.5, and use a factor model 
for f2(x2) such as roadway type and atmospheric stability.  By allowing nonparametric 
fits, well designed GAMs allow good fits to the training data with relaxed 
assumptions on the actual relationship. 

Overfitting can be a problem with GAMs.  The number of smoothing parameters can 
be specified, and this number should be reasonably small (well under the degrees of 
freedom of the modeled data).  Cross-validation can be used to detect and/or reduce 
overfitting problems with GAMs. Other models such as GLMs may be preferable to 
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GAMs in prediction of on-road concentrations unless GAMs improve predictive ability 
substantially for the application in question.    

In practice, we used correlation analysis and scatter plots to determine the linear or 
non-linear relationships between continuous variables and pollutant concentrations. 
For variables that showed simple linear relationship in their scatter plot with good 
correlation they were used as linear regressors in GAM (no need for smoothing 
parameters).  For those with complicated regular non-linear relationship and a better 
non-linear R2 in their scatter plots, we set the smoothing parameter to a higher 
degree of freedom df.  Thus, we could decrease the overfitting problem while 
improving the accuracy.   

5.6.4 Time series model with temporal autocorrelation and factor variables 

In the general linear regression and GAM regression, it was assumed that the 
contiguous measurements between two continuous time slices are independent. But 
there may be significant temporal autocorrelation between every two or more 
subsequent minutes due to continuous measurements during such a short period 
(every one minute).  Without consideration of temporal autocorrelation, predictions 
from the linear or GAM models may be biased.  Thus, we developed a time series 
model that incorporated temporal autocorrelation and factor variables:  

       Equation 5.7  

                                          εβ ++= )( )()( mp XFXy                                 

Equation 5.7 is similar to 5.5 or 5.6 but here ε includes serially correlated errors and 
is not random error (white noise).  Here we assume that the errors from a regression 
model are unlikely to be independent in the time series data, where the observations 
represent different moments or intervals of time (i.e. measurements between every 
one minute), usually equally spaced.  The process generating the regression errors 
is assumed to be stationary.  That is, all of the errors have the same expectation and 
the same variance (σ2), and the covariance of two errors depends only upon their 
separation s in time:  

        Equation 5.8  

                                       ssttstt CC ρσεεεε 2),(),( == −+         

under this model, ρ1 = φ, ρs = φs, and )1/( 222 φσσ −= v .Temporal autocorrelation 

is calculated as:  
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        Equation 5.9  
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where s is the number of lags, t is time slice, et  is the error or residual at t, n is the 
total number of time slices.  If the residuals were independently distributed, the 

standard error of each rs would be approximately n/1 , a quantity that can be used 

as a rough guide to the statistical significance of the residual autocorrelations.  

In practice, we used GLS with inclusion of categorical variables to get preliminary 
estimates of residuals and then calculated their Dubin-Watson statistics to check 
which lag’s temporal autocorrelation is statistically significant.  That residual 
autocorrelation were used to adjust the final predictions from the model.  

We used the most common term for temporally auto-correlated regression errors, the 
first-order auto-regression process, AR(1):  

        Equation 5.10   

                                         ttt v+= −1φεε                             

where the ‘random shocks’ νt are assumed to be Gaussian white noise, 

),0( 2
vt Nv σ∈ .   

In tests, we compiled the data from all the dates to model temporal autocorrelation 
and refined the model.  Although there were some missing values between minutes 
and between days, the number of such missing values was limited and we assumed 
that such few missing values had limited influence upon temporal autocorrelation 
and the prediction model.  We evenly and randomly divided the data into two parts 
according to the date: 75% of the data were used to train the data and the remaining 
25% were used to independently test the model.  We selected the explanatory 
variables in final linear regression models for each air pollutant.  

5.6.5  Model validation  

We used holdout or 3-fold cross validation to validate the fitted models.   

5.6.5.1 Holdout validation as an independent test and validation  

For linear and GAM models, 2/3 of measurement data were used to train the models, 
but for model adjusted for autocorrelation, 3/4 of measurement data were used to 
train the models.  The remaining part (1/3 or 1/4) of the data was used to test the 
model for validation purposes (holdout data).  The training data were selected by 



111 

stratified random sampling.  Strata were defined by roadway types (merging 
freeways, freeways, arterials and local roads) and time of day (early morning, 
morning rush hour, noon, afternoon non-rush hour, afternoon rush hour, and night 
time non-rush hour).  Strata were chosen to avoid bias due to an uneven distribution 
across roadway types and time of commute so that every roadway and commute 
time during each day period was represented by at least 2/3 or 3/4 of the values in 
the training group and 1/3 or 1/4 in the holdout group.   

5.6.5.2 3x3 cross-validation   

The original samples were randomly partitioned equally into 3 groups of subsamples; 
one of the groups was treated as the validation data for testing the model while the 
remaining two groups were used as training data.  The process was repeated 3 
times so that each of 3 subsamples has been used once for validation. The final 
validation results were the averages of the three model runs.   

5.6.5.3 Measurement criteria  

After model selection using the training sample was completed, predicted values for 
the testing subsamples were generated from the prediction equations.  We then 
calculated squared multiple correlations equal to the squared univariate correlation 
between the sample's observed and predicted values as follows:  

        Equation 5.11   
                            R2(1) = R2(Y|X1, X2, ..., Xp) = r2(Y1, Ŷ1)            

where Ŷ1 is the set of predicted particulate concentrations from the p variables, and 
Y1 is the set of observed concentrations for the training group.  

The prediction equation built from the training group were then used to predict 
concentrations Ŷ2 for the 1/3 holdout group and 3x3 cross validation. These 
predicted concentrations Ŷ2 were then correlated to the observed concentrations in 
the holdout group Y2 to give the "cross-validation correlation": 

        Equation 5.12   
                       R2(2) = r2(Y2, Ŷ2)                            

A residual analysis was then performed to check for additional outliers in the holdout 
group and to describe those observations that did not fit the prediction equations.  
The cross-validation correlation was then used to derive the "shrinkage on cross-
validation:"    

        Equation 5.13   
                                R2(1) - R2(2)                            

Since R2(2) is less positively biased than R2(1), the shrinkage is usually positive.  A 
reliable model is clearly suggested when the shrinkage is < 0.10 (9).  In practice, if 
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the model was considered reliable, all of the observations could be pooled to 
estimate regression coefficients for the final prediction equation.   

In this task, we validated models for the exposures of five concentrations, i.e. PAH, 
PNC, PM2.5, NOx, and BC collected in Tasks 1-2.    

 

5.7. RESULTS AND DISCUSSION  

5.7.1 Dependent variable concentrations  

On-road pollutant measurements were obtained from the USC field work for five air 
pollutants (PAH, PNC, PM2.5, NOx, BC).  We averaged the original data at 10-second 
intervals to one-minute averages for model development.  Figure 5.9 represents the 
routes taken for the measurements of pollutant concentrations.  Most measurements 
were performed on freeways (over 60% of the data).  Table 5.6 gives the summary 
statistics for concentrations, and correspondingly, Figure 5.10 presents box plots of 
the concentrations.  There were some missing data (9.2% for PAH, 61% for PNC, 46% 
for PM2.5, and 0.8% for NOx and 40.5% for BC) during the process of measurements 
due to device failure.  BC was measured with considerable noise by the MicroAeth 
AE51 and was very weakly predictive, possibly due to lack instrument precision.  We 
removed outliers from BC to clean the data before modeling and validation.  The 
missing data may impact the accuracy of the models for different air pollutants, 
especially PNC, PM2.5 and BC.   
  
Table 5.6.  Summary Statistics for the One-Minute Average On-Road Air Pollutants  

Figure 5.11 shows histograms after removing several outliers. After exploratory 
analysis, we used a log transformation of PAH and PM2.5 and used a square root 
transformation of PNC, NOX and BC to reduce the skewness (Figure 5.12) and 
normalize the distribution.      

Air Pollutant Samples Min Max Mean Median 

PAH (ng/m3) 4638 0.5659 927.8 56.44 31.95 

PNC (number of 
particles /cm3) 2161 16360.0 319500.0 37510.0 28690.0 

PM2.5 (g/m3) 3992 6.0 135.2 23.01 19.83 

NOX (ppbv) 5337 0.62 499.8 119.3 99.09 

BC (ng/m3) 4130 2.674 14580 3798 5369 
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Figure 5.10:  Box plots for four concentrations, PAH, PNC, PM2.5, NOX and BC  
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5.7.2 Transformation and correlation analysis    

 
a. PAH (skewness=3.53)                         b. PNC (skewness=2.16)  

  
 c. PM2.5 (skewness=2.68)                    d. NOx (skewness=1.05) 

 
   f. BC (skewness=1.24) 

Figure 5.11: Histograms for raw air pollutant concentrations without transformation 

The Pearson and Spearman’s correlation of independent covariates and the 
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transformed (log or square root) dependent variable of concentrations (PAH, PNC, 
PM2.5, NOx, BC) are shown in Table 5.7 and 5.8.  Typical scatter plots of covariates 
significantly correlated with the dependent variables are shown in Figure 5.13- 5.17.  
We paired typical linear or non-linear relationship scatter plots with their linear and 
non-linear regression lines as shown in these scatter plots.  To be selected for 
regression modeling these variables had to have linear or non-linear relationships 
with concentrations.   

   
a. log(PAH) (skewness=-0.28)           b. square root(PNC) (skewness=0.2) 

  

c. log(PM2.5) (skewness=0.59)                d. square root(NOx) (skewness=0.12)  

 

          e. square root(BC) (skewness=0.47)  

Figure 5.12: Normal histograms for the transformed values of air pollutant concentrations.    
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Table 5.7. Correlation of predictor variables with dependent air pollutant variables PAH, PNC, PM2.5 and NOX.  

 * indicates statistical significance at α = 0.1; N: number of valid samples for the covariate and dependent variable; P. c: Pearson correlation; S. c: Spearman’s correlation; Amb temp: temperature of 

the nearest meteorological site to the measurement; #Traffic: traffic counts derived from the PeMS; #Truck: estimated truck counts derived from the PeMS; Wind_sd_com: combination of four levels 

of wind speed and four wind directions; DP: dew point; WB wet bulb; Amb RH: ambient relative humility; On-road RH: on-road relative humility.   

 
PAH PNC PM2.5 NOX 

N P.c S.c N P.c S.c N P.c S.c N P.c S.c 

Vehicle speed 4638 0.395* 0.381* 2161 0.37* 0.38* 3992 0.074 0.045 5337 0.401* 0.406 

Amb. temp 3899 0.037 0.063* 1807 0.075* 0.135* 3354 0.389* 0.299* 4481 0.024 0.049* 

#Traffic 2558 0.159* 0.173* 1229 0.139* 0.142* 2227 0.224* 0.25* 3117 0.17* 0.18* 

AADT 4616 0.482* 0.422* 2128 0.458* 0.442* 3956 0.164* 0.162* 5282 0.459* 0.404* 

VMT_AADT 4616 0.483* 0.508* 2128 0.481* 0.557* 3956 0.119* 0.128* 5282 0.463* 0.518* 

#Truck 4638 0.19* 0.264* 2161 0.138* 0.229* 3992 0.102* 0.147* 5337 0.21* 0.23* 

Lanes  4616 0.428* 0.396* 2142 0.364* 0.402* 3970 0.119* 0.113* 5301 0.413* 0.374* 

Freeways 4638 0.464* 0.446* 2161 0.487* 0.516* 3992 0.088* 0.093* 5337 0.478* 0.446* 

Wind speed 3630 -0.181* -0.196* 1756 -0.093* -0.101* 3119 -0.156* -0.183* 5337 -0.15* -0.19* 

Wind direction 3630 -0.123* -0.118* 1756 -0.155* -0.140* 3119 -0.019 -0.051* 4158 -0.07* -0.095* 

Wind_sd_com 3630 -0.123* -0.151* 1756 -0.155* -0.149* 3119 -0.02 -0.108 4158 -0.071* -0.123* 

On-road DP  2821 0.098* 0.078* 1636 0.146* 0.155* 2754 0.547* 0.553* 3040 0.067* 0.064* 

On-road WB 2821 0.096* 0.093* 1636 0.112* 0.189* 2754 0.635* 0.588* 3040 0.1* 0.092* 

On-road RH 2821 -0.007 0.052* 1636 0.041 0.095* 2754 0.045* 0.20* 3040 -0.044 0.048 

Amb RH 3899 0.098* 0.078* 1807 0.044 0.008 3354 0.02 0.095* 4481 0.063* 0.066* 

Gps_leg_length 723 0.416* 0.379* 310 0.087 0.084 316 -0.119 -0.135 1015 0.049 0.501* 

Hour 4664 -0.301* -0.320* 2161 -0.368* -0.364* 3992 -0.308* -0.339* 5337 -0.182* -0.278* 

Roadway type 4638  0.443* 2161  0.499* 3992  0.101* 5337   0.447 

Time of day 4638  -0.323* 2161  -0.359* 3992  -0.331* 5337  -0.257* 

Stability  43  0.155* 2005  0.203* 3706  0.093* 4941  0.116* 
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Table 5.8. Correlations of predictor variables with BC Concentration Measurements 

 N P.c S.c 
Vehicle speed 4130 0.30* 0.28* 

Temp 3433 0.142* 0.199* 
#Traffic 2632 0.085* 0.102* 
AADT 4094 0.352* 0.303* 

VMT_AADT 4075 0.355* 0.368* 
#Truck 4130 0.121* 0.200* 
Lanes  4094 0.321* 0.287* 

Freeways 4130 0.284* 0.261* 

Wind speed 3204 -0.092* -
0.121* 

Wind direction 3204 -0.084* -0.103 
Wind_sd_com 3204 -0.085* -0.121 

Dew point  2574 0.215* 0.209* 
Wet bulb 2574 0.248* 0.256* 
In hum. 2574 -0.002 0.074* 
Ambient 
humility . 3433 0.005 -

0.038* 
Gps_leg_length 675 0.112* 0.505* 

Hour 4130 -0.29* -
0.323* 

Road type 4130  0.259* 

Daytime 4130  -
0.304* 

Stability  4130  0.034* 

  

 

 
Figure 5.13:  Scatter plots of several covariates with the log dependent variable of PAH  
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Figure 5.14: Scatter plots of several covariates with the square root dependent variable of PNC  

 

 
Figure 5.15:  Scatter plots of several covariates with the log dependent variable of PM2.5  
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Figure 5.16: Scatter plots of several covariates with the log dependent variable of NOx  

 

  
Figure 5.17:  Scatter plots of several covariates with the log dependent variable of BC  

5.7.3 Grouping Comparison    

From correlation analysis, we found that roadway type, time of day and stability may 
have significant influence on concentrations of some pollutants.  We made grouping 
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statistics accordingly and checked how the measurement values varied across 
different categories.   

5.7.3.1 Roadway types  

Table 5.9 shows the grouping statistics by roadway type and statistical significance 
for the differences between freeways and non-freeways groups. Figure 5.18 
presents the grouping box plots of concentrations. There was a significantly higher 
concentration on freeways than on non-freeways as expected.  

Table 5.9.  Grouping Statistics for Air Pollutants by Roadway Types 

Pollutant Roadway 
Type N Mean Median P. c of 

spd 
S. c of 

spd Student t Wilcox 

PAH 

Local  442 24.98 6.14 0.21* 0.41* 
t=-21.51*; 
p=2.2e-16;  

22.89 vs.  66.23 

W=644737*; 
p=2.2e-16 

Arterial  606 22.83 7.32 0.24* 0.20* 
Freeways  3338 64.33 43.96 0.17* 0.25* 

M. Freeways 252 91.29 43.99 0.18* 0.15* 

PNC 

Local  112 24115.23 19791.92 0.22* 0.18* 

t=-26.31*; 
p=2.2e-16;  

15477.6 vs.  45701.6 

W=129699.5*; 
p=2.2e-16 

Arterial  474 13436.66 10675.30 0.20* 0.032 

Freeways  1462 45744.65 36938.38 0.17* 0.19* 

M. Freeways 113 45143.89 37643.87 0.181 0.19 

PM2.5 

Local  419 19.75 18.0 0.07 0.09 

t=-6.68*; 
p=2.9e-11;  

20.74 vs.  23.72 

W=1267091*; 
p=9.85e-10 

Arterial  543 21.51 19.33 0.05 0.02 

Freeways  2805 23.67 20.0 0.06* 0.016 

M. Freeways 225 24.27 21.00 0.002 0.05 

NOX 

Local  503 43.16 19.60 0.29* 0.31* 
t=-38.8*; 

p=2.2e-16;  
49.41 vs.  137.95 

W=738666*; 
p=2.2e-16 

Arterial  620 54.49 35.62 0.30* 0.20* 

Freeways  3933 137.56 120.56 0.27* 0.27* 

M. Freeways 281 143.48 114.27 0.15* 0.16* 

BC 

Local  366 2118.1 1229.47 0.25* 0.31* 
t=-17.72*; 
p=2.2e-16;  

2076. vs.  4087 

W=535772*; 
p=2.2e-16 

Arterial  230 2011.16 978.62 0.36* 0.31* 
Freeways  3308 4078.41 3238.52 0.17* 0.20* 

M. Freeways 226 4223.8 2966.5 0.06 0.05 

Notes:  N: number of samples; * indicates statistical significance at p-value<0.1; P. c of spd: Pearson’s 
correlation of vehicle speed with concentration within a group; S. c of spd: Spearman’s correlation of vehicle 
speed with concentration within a group; student t statistics used to check whether the differences in 
concentration between groups of freeways vs. non freeways is statistical significant assuming the normal 
distribution; Wilcox statistics used to check whether the differences in concentration between groups of freeways 
vs. non freeways is statistical significant without normal assumption.   
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a. PAH by roadway type                                  b. PNC by roadway type    

 
c. PM2.5 by roadway type                  d. NOx by roadway type 

 
                  f. BC by roadway type     
 

Figure 5.18: Box plots of pollutant concentrations across roadway types  

 

5.7.3.2 Time of day  
Table 5.10 shows the grouping statistics by time of day and statistical significance for 
the differences between morning and non-morning groups. Figure 5.19 presents 
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such grouping box plots. There was a statistically higher concentration of PAH, PNC, 
PM2.5, NOX, BC in the morning than at noon, in the afternoon or at night.   
 

Table 5.10.  Grouping Statistics for Air Pollutants by Time of Day 
Type Time of day N Mean Median P. c of spd S. c of spd Student t Wilcox 

PAH 

Early morning 95 107.5 73.83 0.046 0.042 

t=-18.73*; 
p=2.2e-16;  

80.67 vs.  39.63 

W=3567512*; 
p=2.2e-16 

Morning rush 
hour 728 84.82 68.01 0.16* 0.21* 

Mid-morning 1076 75.50 52.9 0.29* 0.38* 
Noon 635 54.99 35.66 0.08* 0.32* 

Afternoon  901 31.42 13.92 0.21* 0.34* 
Evening rush 

hour 592 34.07 20.56 0.18* 0.31* 

Night  611 41.19 26.58 0.038 0.02 

PNC 

Early morning 0 NA NA NA NA 

t=16.74*; 
p=2.2e-16;  
53602.0 vs.  

28487.1 

W=776111*; 
p=2.2e-16 

Morning rush 219 57741.2 46630.1 0.28* 0.36* 
Mid-morning 557 51974.6 47142.9 0.42 0.50 

Noon 322 43963.9 36766.2 0.14* 0.15* 
Afternoon  456 18309.8 13685.3 0.23* 0.16* 

Evening rush 298 25989.6 22758.9 0.13* 0.16* 
Night  309 29786 24807.7 0.07* 0.04* 

PM2.5 

Early morning 95 25.30 21.33 -0.003 -0.15 

t=12.07*; 
p=2.2e-16;  

25.72 vs.  20.54 

W=2581573*; 
p=2.2e-16 

Morning rush 728 24.36 23.33 -0.022 -0.08 
Mid-morning 1076 26.67 21.0 0.05* 0.1* 

Noon 635 26.43 20.33 -0.09 -0.143 
Afternoon  630 20.11 18.25 0.17* 0.083* 

Evening rush 340 15.67 16.55 -0.34* -0.33* 
Night  488 16.82 16.69 -0.43* -0.43* 

NOX 

Early morning 95 174.76 165.3 0.13 0.21* 

t=21.65*; 
p=2.2e-16;  

152.77 vs.  96.74 

W=4506686*; 
p=2.2e-16 

Morning rush 755 162.7 166.7 0.31* 0.31* 
Mid-morning 1301 145.32 135.73 0.38* 0.30* 

Noon 721 116.85 109.69 0.37* 0.41* 
Afternoon  1074 86.15 67.94 0.43* 0.43* 

Evening rush 799 99.16 87.71 0.35* 0.38* 

Night  799 99.16 87.71 0.078 0.071 

BC 

Early morning 68 5163.8 4198.3 0.11 0.11 

t=19.69*; 
p=2.2e-16;  

5100.2 vs.  3030.1 

W=2685479*; 
p=2.2e-16 

Morning rush 424 5777.44 5148.9 0.17* 0.19* 

Mid-morning 1039 4819.7 3900.9 0.24* 0.21* 

Noon 624 4022.2 3405.5 0.13* 0.22* 

Afternoon  743 2596.0 1770.6 0.27* 0.38* 

Evening rush 516 2616.6 2116.8 0.20* 0.26* 

Night  716 2914.1 2296.9 0.04 0.02 
Note: N: number of samples; * indicates statistical significance at p-value<0.1; P. c of spd: Pearson’s correlation of vehicle 
speed with concentration within a group; S. c of spd: Spearman’s correlation of vehicle speed with concentration within a 
group; student t statistics used to check whether the differences in concentration between groups of morning vs. non morning 
is statistical significant assuming the normal distribution; Wilcox statistics used to check whether the differences in 
concentration between groups of morning vs. non morning is statistical significant without normal assumption.   
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a. PAH box plots by time of day 

 
b. PNC box plots by time of day  

 
c. PM2.5 box plots by time of day  
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d. NOx box plots by time of day   

 
e. BC box plots by time of day  

 

Figure 5.19:  Box plots of pollutant concentrations by time of day 

 

5.7.3.3. Atmospheric Stability  

Table 5.11 shows the result of grouping statistics by atmospheric stability and 
statistical significance for the difference between stable and non stable groups. 
Figure 5.20 presents the grouping box plots. Under the stable atmospheric situation, 
there were a statistically significant higher concentrations of PAH, PNC, PM2.5 and 
NOX, but only borderline significant differences for BC.  

 

 

 

 

 

 



125 
 

Table 5.11.  Grouping Statistics for Air Pollutants by Modeled Atmospheric Stability  

Type Stability class N Mean Median P. c of spd S. c of spd Student t Wilcox 

PAH 
A,B,C,D  2910 53.13 27.59 0.25* 0.37* t=-5.68*; 

p=1.44e-8;  
53.13 vs.  65.76 

W=1639320*; 
p=2.2e-16 E,F,G 1393 65.76 47.15 0.18* 0.25* 

PNC 
A,B,C,D  1584 34479.3  26909.40 0.27* 0.33* t=-8.44*; 

p=2.66e-16; 
 34479 vs.  50824 

W=247671*; 
p=2.2e-16 E,F,G 421 50824.2 42658.7 0.33* 0.31* 

PM2.5 
A,B,C,D  2517 22.73 19.5 0.1* 0.06* t=-1.98*; 

p=0.048;  
22.74 vs. 23.6 

W=1325143*; 
p=1.8e-8 E,F,G 1189 23.61 20.5 -0.05 -0.12* 

NOX 
A,B,C,D  3262 114.13 92.07 0.40* 0.43* t=--7.61*; 

p=3.5e-14;  
114 vs. 135 

W=2350250*; 
p=3.0e-16 E,F,G 1679 134.97 118.8 0.26* 0.25* 

BC 
A,B,C,D  2488 3725.06 2784.1 0.24* 0.28* t=-7.83; 

p=0.068;  
3725 vs. 3907 

W=1960054*; 
p=0.027 E,F,G 1642 3907.3 3029.6 0.23* 0.27* 

Note: N: number of samples; * indicates statistical significance; P. c of spd: Pearson’s correlation of vehicle speed with 
concentration within a group; S. c of spd: Spearman’s correlation of vehicle speed with concentration within a group; student 
t statistics used to check whether the differences in concentration between groups of un-stable atmospheric situation (ABCD) 
vs. stable atmospheric situation (EFG) is statistical significant assuming the normal distribution; Wilcox statistics used to 
check whether the differences in concentration between groups of un-stable atmospheric situation vs. stable atmospheric 
situation is statistical significant without normal assumption.   
 

  
a. PAH grouping by stability                b. PNC grouping by stability 

 
c. PM2.5 grouping by stability                d. NOx grouping by stability   
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e. BC grouping by stability             

 

Figure 5.20: Box plot of pollutant concentrations by stability groups 

 

5.7.4 Regression models for prediction      

We used linear regression and non-linear generalized additive models to build the 
predictive equations.  The concentrations were log- or square root-transformed to 
produce normal distributions.  

5.7.4.1 PAH modeling  

In these models, PAH has been log transformed.  In the modeling of grouped 
variables, these variables were selected by their higher R2 and their statistical 
significance at p-value<0.1.  

 

Model 1: grouping regression by roadway type  

Independent variables for selection in linear regression or GAM include five 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
temperature) and two factor variables (stability, time of day). They were selected by 
the higher R2 and statistical significance at p-value<0.1.  There were small 
differences in the independent variables selected in the models of different roadway 
types and such differences had limited influence upon the prediction accuracy.  
Table 5.12 lists the regression results by roadway type with their optimal models.   

 
Table 5.12.  Prediction Performance for Grouping PAH by Roadway Types  

Roadway type Samples R2 for linear 
regression R2 for GAM 

Local road 442 0.41 0.51 

Arterial road 606 0.30 0.41 

One freeway 3338 0.28 0.31 

Merging of 2 or more freeways 252 0.34 0.53 
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Model 2: Grouping regressions by time of day  

Independent variables for selection in linear regression or GAM include five 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
ambient temperature) and two factor variables (stability, roadway type). They were 
selected by the higher R2 and statistical significance at p-value<0.1. There were 
small differences in the independent variables selected in the models of different 
times of day and such differences had limited influence upon the prediction accuracy. 
Table 5.13 lists the grouping regression results with their optimal models.  

 

 
Table 5.13  Prediction Performance for Grouping PAH by Time of day   

Time of day N Samples  R2 for linear regression  R2 for GAM 

Early morning 89 0.35 0.52 

Morning rush hour 622 0.37 0.44 
Mid-morning 869 0.51 0.55 

Noon 495 0.47 0.46 
Afternoon  762 0.39 0.41 

Evening rush hour 498 0.31 0.31 

Night  544 0.27 0.33  

 

Model 3: grouping regression by estimated stability  

Independent variables for selection in linear regression or GAM include five 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
ambient temperature) and two factor variables (time of day, roadway type).  They 
were selected by the higher R2 and statistical significance at p-value<0.1.  There 
were small differences in the independent variables selected in the models of 
different stability class and such differences had limited influence upon the prediction 
accuracy.  Table 5.14 listed the grouping regression results with their optimal models.  

 
 

Table 5.14.  Prediction Performance for Grouping PAH by Stability  

Stability  Samples  R2 for linear regression  R2 for GAM 

A,B,C,D 2580 0.41 0.43 

E,F,G 1299 0.24 0.36 

 

Model 4: Final regression models and model validation  

Predictor variables in the linear regression model included four continuous variables 
(vehicle speed, VMT_AADT, number of lanes, ambient temperature) and two factor 
variables (time of day, roadway type);   
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Predictor variables in GAM include five continuous variables (vehicle speed, 
VMT_AADT, number of lanes, truck count, temperature) and two factor variables 
(time of day, roadway type).  

Table 5.15 gives the coefficients in the linear model, degree of freedom in GAM and 
the variances explained.  Coefficients of the linear model indicate the influence of 
each variable and degrees of freedom in GAM indicates the fit degree of smooth for 
each coefficient.  Table 5.16 presents the results of independent holdout test (2/3 for 
training; 1/3 for test) and 3x3 cross validation.   

 
Table 5.15.  Coefficients Regressed and Variance Explained for the Prediction of PAH. 

 Coefficients in 
linear model 

Degree of 
freedom in GAM 

Variance explained (%) 
Linear model GAM 

Intercept 2.58    
Vehicle speed 0.004 9.96* 15.41 2.17 

VMT_AADT 0.0000035 13.63* 8.72 2.56 

Lanes 0.041 6.5* 2.15 1.41 
Truck counts  6.2*  6.9 

Ambient temperature 0.02 24.21* 0.13 5.89 

Time of day   7.44 23.25 
Roadway type   9.2 9.60 

Total variance Explained   43.05 51.8 
Note: * indicates degree of freedom; gray color indicates categorical variables as factors.  

 

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was 
< 10 (maximum VIF=2.12), so we can safely use the model: with vehicle speed: 1.58; 
VMT_AADT:1.89; Lanes: 2.04; hour: 1.24; roadway types: 2.12; truck count: 1.2; 
stability: 1.33; temperature: 1.19. 

 
 

Table 5.16.  Independent 1/3 Holdout and 3x3 Cross Validation of Predictive 
Models for PAH. 

 Linear regression  Generalized additive model  
General  3 times CV 1/3 test  General  3 times CV 1/3 test  

Samples  3879  3879 2596 vs. 1283 3879 3879 2596 vs. 1283 

R2  0.43  0.42 0.42 0.52 0.43 0.46 
P. cor.  0.65*  0.65 0.65* 0.73* 0.65* 0.68* 
S. cor.  0.64*  0.64* 0.64* 0.71* 0.64* 0.66* 
 

Note: General: no cross validation; 3 times CV: 3-times 3-fold cross validation; 1/3 test: two thirds used for 
training and one third used for test; P. cor.: Pearson correlation between the observed values and the predicted 
values; S. cor.: Spearman’s correlation between the observed values and the predicted values; * indicates 
statistical significance.   

5.7.4.2 PNC modeling  

In these models, PNC has been square root transformed to normalize its distribution. 
In the modeling of grouped variables, these variables were selected by their higher 
R2 with their statistical significance at p-value<0.1.  
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Model 1: Grouping regression by roadway type  

Independent variables for selection in linear regression or GAM include five 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
ambient temperature) and two factor variables (time of day, stability). They were 
selected by the higher R2 and statistical significance at p-value<0.1. There were 
small differences for the independent variables selected in the models of different 
roadway types and such differences had limited influence upon the prediction 
accuracy.  Table 5.17 listed the grouping regression results with their optimal models.  

Table 5.17.  Prediction Performance for Grouping Particle Number Concentrations by Roadway 
Type 

Roadway type  N Samples  R2 for linear 
regression  

R2 for GAM 

Local road  86 0.33 0.46 
Arterial road 387 0.35 0.52 
One freeway  1151 0.29 0.34 
Merging of 2 or more freeways 39 0.48  0.40 

 
Model 2: grouping regression by time of day  

Independent variables for selection in linear regression or GAM include five 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
ambient temperature) and one factor variable (roadway type).  They were selected 
by the higher R2 and statistical significance at p-value<0.1.  There were small 
differences for the independent variables selected in the models of different times of 
day and such differences had limited influence upon the prediction accuracy.  Table 
5.18 lists the grouping regression result with their optimal models.  

Table 5.18.  Prediction Performance for Grouping Particle Number Concentrations by Time of 
Day 

Time of day N Samples  R2 for linear regression  R2 for GAM 

Early morning 0 NA NA 

Morning rush 151 0.46 0.43 
Mid-morning 457 0.41 0.44 

Noon 239 0.19 0.22 
Afternoon  374 0.54 0.55 

Evening rush 251 0.29 0.32 

Night  191  0.21 0.19 

 

Model 3: grouping regression by stability  

Independent variables for selection in linear regression or GAM include five 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
ambient temperature) and two factor variables (roadway type, time of day). They 
were selected by the higher R2 and statistical significance at p-value<0.1. There 
were small differences for the independent variables selected in the models of 
different stability classes and such differences had limited influence upon the 
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prediction accuracy. Table 5.19 lists the grouping regression results with their 
optimal models. 

Table 5.19. Prediction Performance for Grouping Particle Number Concentration by 
Atmospheric Stability 

 
 

 

Model 4: Final regression models and model validation  

Predictor variables in the linear regression model include four continuous variables 
(vehicle speed, VMT_AADT, number of lanes, ambient temperature) and two factor 
variables (roadway type, time of day);   

Predictor variables in GAM include four continuous variables (vehicle speed, 
VMT_AADT, number of lanes, ambient temperature) and two factor variables 
(roadway type, time of day).  

Table 5.20 gives the coefficients in linear model, degree of freedom in GAM and the 
variances explained for PNC modeling. Table 5.21 presents the results of 
independent holdout test and cross validation.    

Table 5.20.   Coefficients Regressed and Variance Explained for the Prediction of Particle 
Number 

 Coefficients 
Linear model 

Degree of 
freedom GAM 

Variance explained (%) 

Linear model GAM 

Intercept 162.0    

Vehicle speed 0.29 5.8* 15.44 2.64 

VMT_AADT 0.000317 14.33* 10.28 4.21 

Lanes  1*  0.21 

Ambient temperature  28.7*  13.21 

Time of day    17.83 26.60 

Roadway type   3.9 15.80 

Total variance explained    47.45 62.67 

Note: * indicates degree of freedom; gray color indicates the categorical variables as factors.  
 
Table 5.21. Independent 1/3 Hold-out and 3x3 Cross Validation of Predictive Models for Particle 

Number. 

 
Linear regression Generalized additive model 

General 3 times CV 1/3 test General 3 times CV 1/3 test 

N 
Samples 1789 1789 1199 vs. 590 1789 1789 1199 vs. 590 

R2 0.47 0.46 0.47 0.63 0.54 0.52 

P. cor. 0.69* 0.67* 0.66* 0.78* 0.73* 0.77* 

S. cor. 0.70* 0.68* 0.67* 0.76* 0.73* 0.76* 
Note: general: no cross validation; 3 times CV: 3 times 3-fold cross validation; 1/3 test: two thirds used for training 
and one third used for test; P. cor.: Pearson correlation between the observed values and the predicted values; S. 

Stability Samples  R2 for linear regression  R2 for GAM 

A,B,C,D 1311 0.38 0.43 

E,F,G 352 0.41 0.52 
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cor.: Spearman’s correlation between the observed values and the predicted values; * indicates statistical 
significance.   

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was 
< 10 (maximum VIF=4.51), so we can safely use the model: with vehicle speed: 1.64; 
VMT_AADT:2.33; Lanes: 2.31; hour: 1.37; roadway types: 4.56; truck count: 1.2; 
stability: 1.3; temperature: 1.14  
 
5.7.4.3 PM2.5 modeling  

In these models, PM2.5 has been log transformed to normalize its distribution. In the 
modeling of grouped variables, these variables were selected by their higher R2 and 
their statistical significance at p-value<0.1.  

An optimal scheme was to just use wet bulb temperature rather than dew point 
temperature to decrease multi-collinearity.   

Model 1: grouping regression by roadway type  

Independent variables for selection in linear regression or GAM include four 
continuous variables (ambient temperature, AADT, wet bulb temperature, wind 
speed) and one factor variable (time of day).  They were selected by the higher R2 
and statistical significance at p-value<0.1.  There were small differences for the 
independent variables selected in the models of different roadway types and such 
differences had limited influence upon the prediction. Table 5.22 lists the grouping 
regression results with their optimal models.  

Table 5.22. Prediction Performance for Grouping PM2.5 by Roadway Type 

Roadway type  Samples  R2 for linear 
regression  

R2 for GAM 

Local road  419 0.66 0.79 
Arterial road 543 0.69 0.84 
One freeway  2805 0.68 0.75 
Merging of 2 or more freeways 225 0.63 0.76 

 
Model 2: grouping regression according to time of day  
Independent variables for selection in linear regression or GAM include four 
continuous variables (ambient temperature, AADT, wet bulb temperature, wind 
speed) and one factor variable (roadway type). They were selected by the higher R2 
and statistical significance at p-value<0.1. There were small differences for the 
independent variables selected in the models of different time of day and such 
differences had limited influence upon the prediction accuracy. Table 5.23 lists the 
grouping regression results with their optimal models.  

Table 5.23.  Prediction Performance for Grouping PM2.5 by Time of Day 

Time of day Samples  R2 for linear regression  R2 for GAM 

Early morning 72 0.20 0.14 

Morning rush hour 406 0.47 0.55 
Mid-morning 64 0.73 0.76 

Noon 346 0.77 0.84 
Afternoon  153 0.78 0.79 

Evening rush hour 173 0.75 0.82 

Night  268 0.78 0.82 
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Model 3: grouping regression according to stability  

Independent variables for selection in linear regression or GAM include four 
continuous variables (ambient temperature, AADT, wet bulb temperature, wind 
speed) and one factor variable (time of day). They were selected by the higher R2 
and statistical significance at p-value<0.1. There were small differences for the 
independent variables selected in the models of different stability classes and such 
differences had limited influence upon the prediction accuracy. Table 5.24 lists the 
grouping regression results with their optimal models.  

 
Table 5.24. Prediction Performance for Grouping PM2.5 by Stability Class 

Stability Samples R2 for linear regression R2 for GAM 

A,B,C,D 1212 0.66 0.73 

E,F,G 850 0.39 0.53 

 

Model 4: Final regression models and model validation   

Predictor variables in the linear regression model include three continuous variables 
(temperature, wet bulb temperature, wind speed) and one factor variable (time of 
day);   

Predictor variables in GAM include four continuous variables (temperature, aadt, wet 
bulb temperature, wind speed) and one factor variables (time of day).   

Similarly, Table 5.25 gave the coefficients in linear model, degree of freedom in GAM 
and variance explained for PM2.5 modeling. Table 5.26 presents the results of 
independent holdout test and cross validation.    

 
Table 5.25   Coefficients Regressed and Variance Explained for the Prediction of PM2.5. 

 Coefficients in 
Linear model 

Degree of 
freedom in GAM 

Variance explained (%) 

Linear model GAM 

Intercept 0.0243    

Ambient temperature 0.0502 8.74 34.34 7.87 

AADT  5.428  1.01 

Wet bulb temperature 0.188 8.72 11.84 31.08 

Wind speed -0.088  0.93 2.56 

Time of day    20.59 30.31 

Total variance explained    67.7 72.83 

Note: * indicates degree of freedom; gray color indicates the categorical variables.  
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Table 5.26.  Independent 1/3 Holdout and 3x3 Cross Validation of Predictive Models for PM2.5. 

 
Linear regression Generalized additive model 

General 3 times CV 1/3 test General 3 times CV 1/3 test 

Samples 2062 2062 1385 vs. 677 2062 2062 1385 vs. 677 

R2 0.68 0.67 0.67 0.73 0.72 0.72 
P. cor. 0.82* 0.82* 0.82* 0.86* 0.84 0.85* 
S. cor. 0.77* 0.77* 0.76* 0.79* 0.78* 0.77* 

Note: general: no cross validation; 3 times CV: 3 times 3-fold cross validation; 1/3 test: two thirds used for training 
and one third used for test; P. cor.: Pearson correlation between the observed values and the predicted values; S. 
cor.: Spearman’s correlation between the observed values and the predicted values; * indicates statistical 
significance.  

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was 
< 10 (max VIF=9.73), so we can safely use the model: with temperature: 3.42; 
AADT:7.38; Lanes: 7.26; hour:1.82; wet bulb: 9.72.  

5.7.4.4 NOX modeling  

In these models, NOx has been square root transformed to normalize its distribution. 
In the modeling of grouped variables, these variables were selected by their higher 
R2 with their statistical significance at p-value<0.1.  

Model 1: grouping regression according to roadway type  

Independent variables for selection in linear regression or GAM include six 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
ambient temperature, wind speed) and one factor variable (time of day). They were 
selected by the higher R2 and statistical significance at p-value<0.1. There were 
small differences for the independent variables selected in the models of different 
roadway types and such differences had limited influence upon the prediction 
accuracy. Table 5.27 lists the grouping regression results with their optimal models.  

 
Table 5.27. Prediction Performance for Grouping NOx by Roadway Type 

Roadway type N 
Samples 

R2 for linear 
regression R2 for GAM 

Local road 503 0.31 0.62 
Arterial road 620 0.31 0.66 
One freeway 3933 0.25 0.34 

Merging of 2 or more freeways 281 0.23 0.54 

 

Model 2: grouping regression by time of day  

Independent variables for selection in linear regression or GAM include six 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
ambient temperature, wind speed) and one factor variable (roadway type). They 
were selected by the higher R2 and statistical significance at p-value<0.1. There 
were small differences for the independent variables selected in the models of 
different time of day and such differences had limited influence upon the prediction 
accuracy. Table 5.28 lists the grouping regression results with their optimal models.  
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Table 5.28.  Prediction Performance for Grouping NOx by Time of Day 

Time of day N Samples  R2 for linear regression  R2 for GAM 

Early morning 72 0.38 0.65 

Morning rush hour 460 0.50 0.58 
Mid-morning 814 0.51 0.66 

Noon 392 0.30 0.32 
Afternoon  160 0.44 0.63 

Evening rush hour 204 0.41 0.48 

Night  396 0.35 0.43 
 
Model 3: grouping regression by stability  

Independent variables for selection in linear regression or GAM include six 
continuous variables (vehicle speed, VMT_AADT, number of lanes, truck count, 
ambient temperature, wind speed) and two factor variables (roadway type, time of 
day). They were selected by the higher R2 and statistical significance at p-value<0.1. 
There were small differences for the independent variables selected in the models of 
different stability classes and such differences had limited influence upon the 
prediction accuracy. Table 5.29 lists the grouping regression results with their 
optimal models. 

Table 5.29.  Prediction Performance for Grouping NOx by Stability 

Stability Samples  R2 for linear regression  R2 for GAM 

A,B,C,D 1508 0.47 0.49 

E,F,G 990 0.43 0.49 

 
Model 4: Final regression models and model validation  

Predictor variables in the linear regression model include five continuous variables 
(vehicle speed, VMT_AADT, number of lanes, ambient temperature, wind speed) 
and two factor variables (roadway type, time of day).  Predictor variables in GAM 
include six continuous variables (vehicle speed, VMT_AADT, number of lanes, truck 
count, ambient temperature) and two factor variables (roadway type, time of day).   
Table 5.30 gives the coefficients in linear model, degree of freedom in GAM and 
variance explained for NOX modeling. Table 5.31 presents the results of independent 
holdout test and cross validation.    
 

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was 
< 10 (max VIF=2.02), so we can safely use the model: with vehicle speed: 1.46; 
VMT_AADT:1.617; Lanes: 2.02; hour: 1.18; roadway types: 1.48; truck count: 1.153; 
wind speed 1.154; temperature: 1.088.   
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Table 5.30.  Coefficients Regressed and Variance Explained for the Prediction of NOx. 

 Coefficients in 
Linear model 

Degree of 
freedom in GAM 

Variance explained (%) 

Linear 
model GAM 

Intercept 7.218    

Vehicle speed 0.018 12.355 16.22 2.33 

VMT_AADT 0.0000154 17.4 8.29 3.77 

Lanes  7.2  0.50 

Ambient temperature 0.0358 27.8 0.0078 5.6 

Wind speed -0.3223  0.25 6.42 

Truck count     2.23 

Time of day    5.19 16.92 

Roadway type   10.25 11.93 

Total variance explained    40.21 49.7 
Note: * indicates degree of freedom; gray color indicates the categorical variables as factors.  

 

Table 5.31.  Independent Holdout and 3x3 Cross Validation of Predictive Models for NOx. 

 Linear regression  Generalized additive model  
General  3 times CV 1/3 test  General  3 times CV 1/3 test  

N 
Samples  

4446  4446 2974 vs. 1472 4446 4446 2974 vs. 1472 

R2  0.40 0.40 0.36 0.50 0.47 0.44 
P. cor.  0.634* 0.63* 0.60* 0.66* 0.67* 0.66* 
S. cor.  0.635* 0.63* 0.59* 0.66* 0.68* 0.66* 

Note: 3 times CV: 3 times 3-fold cross validation; 1/3 test: two thirds used for training and one third used for test; 
P. cor.: Pearson correlation between the observed values and the predicted values; S. cor.: Spearman’s 
correlation between the observed values and the predicted values; * indicates statistical significance. 
 

5.7.4.5 BC modeling  

In these models, BC has been square root transformed to normalize its distribution. 
In the modeling of grouped variables, these variables were selected by their higher 
R2 and their statistical significance at p-value<0.1.  

Model 1: grouping regression according to roadway type  

Independent variables for selection in linear regression or GAM include six 
continuous variables (vehicle speed, VMT_AADT, number of lanes, ambient 
temperature, wet bulb, wind speed) and one factor variable (time of day).  They were 
selected by the higher R2 and statistical significance at p-value<0.1.  There were 
small differences for the independent variables selected in the models of different 
roadway types and such differences had limited influence upon the prediction 
accuracy.  Table 5.32 lists the grouping regression results with their optimal models.  
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Table 5.32. Prediction Performance for Grouping BC by Roadway Type 

Roadway type N 
Samples 

R2 for linear 
regression R2 for GAM 

Local road 366 0.23 0.47 
Arterial road 230 0.48 0.72 
One freeway 3208 0.32 0.42 

Merging of 2 or more freeways 226 0.37 0.61 

Model 2: grouping regression by time of day  

Independent variables for selection in linear regression or GAM include six 
continuous variables (vehicle speed, VMT_AADT, number of lanes, ambient 
temperature, wind speed, wet bulb) and one factor variable (roadway type). They 
were selected by the higher R2 and statistical significance at p-value<0.1. There 
were small differences for the independent variables selected in the models of 
different time of day and such differences had limited influence upon the prediction 
accuracy. Table 5.33 lists the grouping regression results with their optimal models.  

 
Table 5.33.  Prediction Performance for Grouping BC by Time of Day 

Time of day   N Samples  R2 for linear regression  R2 for GAM 

Early morning 65 0.52 0.85 

Morning rush hour 362 0.38 0.54 
Mid-morning 705 0.40 0.54 

Noon 326 0.12 0.34 
Afternoon  135 0.33 0.68 

Evening rush hour 183 0.15 0.26 

Night  327 0.23 0.43 

 

Model 3: grouping regression by stability  

Independent variables for selection in linear regression or GAM include six 
continuous variables (vehicle speed, VMT_AADT, number of lanes, ambient 
temperature, wind speed, wet bulb) and two factor variables (roadway type, time of 
day). They were selected by the higher R2 and statistical significance at p-value<0.1. 
There were small differences for the independent variables selected in the models of 
different stability classes and such differences had limited influence upon the 
prediction accuracy. Table 5.34 lists the grouping regression results with their 
optimal models.  

Table 5.34.  Prediction Performance for Grouping BC by Stability 

Stability  Samples  R2 for linear regression  R2 for GAM 

A,B,C,D 1249 0.39 0.45 

E,F,G 854 0.34 0.47 
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Model 4: Final regression models and model validation  

Predictor variables in the linear regression model include five continuous variables 
(vehicle speed, VMT_AADT, ambient temperature, wind speed, wet bulb) and two 
factor variables (roadway type, time of day);   

Predictor variables in GAM include six continuous variables (vehicle speed, 
VMT_AADT, number of lanes, wet bulb, wind speed, ambient temperature) and two 
factor variables (roadway type, time of day) 

Table 5.35 gives the coefficients in linear model, degree of freedom in GAM and 
variance explained for BC modeling.  Table 5.36 presents the results of independent 
holdout test and cross validation.    

Table 5.35.  Coefficients Regressed and Variance Explained for the Prediction of BC. 

 Coefficients in 
Linear model  

Degree of 
freedom in GAM 

Variance explained (%) 

Linear 
model 

GAM 

Intercept  -6.88    

Vehicle speed  0.022 2.65 4.41 1.23 

VMT_AADT 0.000051 4.74 4.06 2.72 

Ambient 
temperature  

1.81 6.6 1.87 5.31 

Wind speed  -3.365  1.76 3.37 

Wet bulb  2.89 6.7 7.35 3.52 

Time of day     12.99 19.81 

Roadway type   4.18 6.64 

Total variance 
explained 

  36.63 42.6 

Note: * indicates degree of freedom; gray color indicates the categorical variables as factors.  
 

Table 5.36.  Independent Holdout and 3x3 Cross Validation of Predictive Models for BC. 

 Linear regression  Generalized additive model  
General  3 times CV 1/3 test  General  3 times CV 1/3 test  

N 
Samples  

2103  2103 1410 vs. 693 2103  2103 1410 vs. 693 

R2  0.37 0.30 0.34 0.43 0.31 0.39 
P. cor.  0.61* 0.56* 0.58* 0.67* 0.56* 0.62* 
S. cor.  0.62* 0.57* 0.61* 0.67* 0.58* 0.63* 

Note: 3 times CV: 3 times 3-fold cross validation; 1/3 test: two thirds used for training and one third used for test; 
P. cor.: Pearson correlation between the observed values and the predicted values; S. cor.: Spearman’s 
correlation between the observed values and the predicted values; * indicates statistical significance. 

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was 
< 10 (max VIF=1.89), so we can safely use the model: Vehicle speed: 1.42; 
VMT_AADT: 1.60; Lanes: 1.88; hour: 1.27; roadway types: 1.50; wind speed 1.18; 
temperature: 1.83; wet bulb 1.89.   
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5.7.5 Time series analysis 

Table 5.37 lists temporal autocorrelations by temporal lag using the training data to 
train the model.  Lag refers to minutes, i.e. Lag n indicating n minutes lagged. Figure 
5.21 presents temporal and partial temporal autocorrelations for PAH, PNC, PM2.5, 
NOX, and BC.    

Given the temporal autocorrelation shown in Table 5.37 and Figure 5.21, we 
controlled for temporal autocorrelation at lag 1 in models and made final predictions 
of concentrations for PAH, PNC, PM2.5, NOX and BC.  The result (Table 5.38) shows 
that the prediction with incorporation of first order autocorrelation (AR1) resulted in a 
significant improvement in the model’s R2 (ranging from 20% to 48.9%), and 
Pearson or Spearman’s correlation for PAH, PNC, NOX and BC, but not for PM2.5. 

Table 5.37. Temporal Autocorrelation among Different Daily Lags 

Type # Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 
10 

PAH 3879 0.59* 0.40* 0.30* 0.25* 0.22* 0.18* 0.15* 0.14* 0.12* 0.11* 
PNC 2161 0.69* 0.56* 0.48* 0.41* 0.33* 0.29* 0.24* 0.24* 0.21* 0.21 
PM2.5 2062 0.75* 0.62* 0.56* 0.45* 0.41* 0.38* 0.36* 0.35* 0.35* 0.33* 
NOX 5337 0.68* 0.47* 0.37* 0.31* 0.24* 0.22* 0.20* 0.18* 0.14* 0.13* 
BC  4130 0.73* 0.50* 0.40* 0.33* 0.27* 0.25* 0.23* 0.17* 0.16* 0.15* 

Note: # number of samples; * indicates statistical significance  

 
                   a. Autocorrelation for PAH                   b. Partial autocorrelation for PAH  

  
               c. Autocorrelation for PNC                d. Partial autocorrelation for PNC  
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               e. Autocorrelation for PM2.5                     f. Partial autocorrelation for PM2.5  

 
              g. Autocorrelation for NOX                     h. Partial autocorrelation for NOX  

 
               i. Autocorrelation for BC                               j. Partial autocorrelation for BC  
 

Figure 5.21: Autocorrelation and partial-autocorrelation autocorrelogram for the residuals from 
the ordinary least squares (OLS) regression of concentrations  
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Table 5.38. Evaluation of the Time Series Models Constructed.   

Type  Samples  Model’s output  Independent  test (25% of 
data) 

R2 P.Cor S.Cor R2 P.Cor S.Cor 
PAH 3879 0.62 0.8* 0.80* 0.59 0.78* 0.76* 
PNC 2161 0.68 0.85* 0.84* 0.67 0.84* 0.84* 
PM2.5 2062 0.78 0.89* 0.88* 0.73 0.88* 0.87* 
NOX 5337 0.66 0.83* 0.84* 0.60 0.82* 0.82* 
BC 4130 0.64 0.80* 0.81* 0.57 0.77* 0.79* 

 With all the results of linear regression and GAM, we also calculated the shrinkage 
on 3x3 cross validation using equation 5.13 in Table 5.39.  

 
Table 5.39.  Shrinkage on 3x3 Cross Validation of Predictive Time Series Models for the Air 

Pollutants.  

Concentration  Model R2 CV R2 shrinkage on cross-validation 

PAH 
LM 0.43 0.42 0.01<0.1 

GAM 0.51 0.43 0.08<0.1  

PNC 
LM 0.48 0.46 0.02<0.1 

GAM 0.63 0.54 0.09<0.1 

PM2.5 
LM 0.68 0.67 0.01<0.1 
GAM 0.73 0.72 0.01<0.1 

NOx 
LM 0.40 0.40 0<0.1 
GAM 0.50 0.47 0.03<0.1  

BC 
LM 0.37 0.30 0.07<0.1 
GAM 0.43 0.39 0.04<0.1 

5.7.6 Discussion  

5.7.6.1 Correlation analysis and scatter plots  

Our results show that each independent variable had varying correlations with the 
dependent air pollutant variables (Table 5.7 and 5.8).  Overall, vehicle speed, 
roadway type, AADT were moderately or highly positively correlated with PAH, PNC 
and NOx and BC.  For PAH, PNC, and NOx, meteorological factors such dew point, 
wet bulb temperature, relative humility, wind speed and direction had little relation to 
them.  For PM2.5, traffic-related factors had less influence than meteorological 
parameters.  This is expected since local traffic emissions were a major source of 
PAH, PNC, NOx and BC while PM2.5 has been shown to be more of a regional 
pollutant with less local traffic contributions (10,11).  

Scatter plots with linear and non-linear regression lines (Figure 5.13-5.17) helped us 
examine the linear or non-linear relationships between the independent and 
dependent variables.  For example, although time of day (hour) represents a 
negative correlation with concentration, the variation of concentrations is non-linear 
along a day’s timeline as illustrated in the scatter plots (Figure 5.13-5.17 scatter plots 
of hour with transformed measured values of concentrations).  Thus, using non-
linear smooth function to fit the term of day-time can improve the model’s prediction.   
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5.7.6.2 Influence of roadway types   

As expected, we observed much higher concentrations for PAH, PNC, NOX and BC 
(not PM2.5) on freeways than arterials and local roads, mainly due to more vehicles 
and higher speed of vehicles on freeways. The grouping statistics (t student and 
Wilcoxon statistics) also showed that the difference between freeways and non-
freeways was statistically significant for PAH, PNC, NOX and BC.  Furthermore, such 
a difference in concentrations between freeways and non-freeways were great as 
shown in Table 5.9.  In the final regression models, the R2 for roadway type was 9.2% 
(linear regression) or 9.6% (GAM) for PAH (Table 5.15), 3.9% (linear regression) or 
15.8% (GAM) for PNC (Table 5.20), 10.25% (linear regression) or 11.93% (GAM) for 
NOX (Table 5.30) and 4.18% (linear regression) or 6.64% (GAM) for BC (Table 5.35).  
However, we found that roadway type was not an effective predictor variable for 
PM2.5.        

5.7.6.3 Influence of time of day   

Time of day had a negative correlation with concentrations of PAH, PNC,  NOx, BC 
and PM2.5 (Table 5.7 and 5.8, -0.182 to -0.368 for Pearson’s correlation and -0.287 
to -0.364 for Spearman’s correlation).  Scatter plots also showed the regular pattern 
of concentration along a day’s timeline (Figure 5.13-5.17).  Furthermore, in the final 
regression models, the R2 for time of day explained 7.44% (linear regression) or 
23.25% (GAM) for PAH, 17.83% (linear regression) or 26.60% (GAM) for PNC, 
20.59% (linear regression) or 30.31% (GAM) for PM2.5, 5.2% (linear regression) or 
16.92% (GAM) for NOX and 12.99% (linear regression) or 19.81% (GAM) for BC.  
Time of day showed the greatest R2 among all predictor variables for any air 
pollutant.  

The grouping statistics (t student and Wilcoxon statistics) for the concentrations in 
the morning vs. non-morning showed statistically significant differences in 
concentrations (Table 5.10 and Figure 5.19).  Our analysis showed the highest 
concentration of PAH, PNC, PM2.5, NOX or BC in the morning.  Time of day is a 
significant variable for the prediction of all five air pollutant concentrations in the 
present study.  This is expected because time of day reflects diurnal variations in 
both traffic activity patterns and meteorological parameters.   

5.7.6.4 Influence of traffic variables   

Traffic variables are expected to be a critical influential variable since it is a major 
emission source for PAH, PNC, NOX and BC. The PeMS five-minute traffic counts 
and estimated truck counts was not a sufficient predictor of traffic because it only 
covered a small part of the study routes and periods.  

Annual average daily traffic (AADT) or VMT_AADT is the total volume of vehicle 
traffic of a highway or road for a year divided by 365 days.  Given its greater 
completeness, we found AADT or VMT_AADT, as an alternative to 5-minute PeMS 
traffic counts, was an effective predictive variable.  VMT_AADT was selected for final 
regression models given its somewhat stronger correlation and had an R2 of 8.72% 
(linear regression) or 2.56% (GAM) for PAH, 10.28% (linear regression) or 4.21% 
(GAM) for PNC, 1.01% (GAM) for PM2.5, 8.29% (linear regression) or 3.77% (GAM) 
for NOX and 4.06% (linear regression) or 2.72% (GAM) for BC.  This suggests that 
VMT_AADT is a moderately predictive variable.  
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5.7.6.5 Influence of meteorological factors   

For PAH, PNC and NOX, meteorological factors such as wind speed, wind direction, 
temperature, dew point temperature, and relative humility had slight or moderate 
influence on their prediction.  Among these variables, temperature plays a more 
significant role, with an R2 of 0.13% (linear regression) or 5.89% (GAM) for PAH, 
13.21% (GAM) for PNC, 34.34% (linear regression) or 7.87% (GAM) for PM2.5, and 
0.0078% (linear regression) or 5.60% (GAM) for NOx, and 1.87% (linear regression) 
or 5.31% (GAM) for BC.  

However, meteorological factors such as wet bulb or dew point temperatures were 
good predictor variables for PM2.5 since log-transformed PM2.5 was highly correlated 
with both (>0.5, Table 5.7).  Furthermore, meteorological factors improved the 
predictability of PM2.5 better than the other pollutants (overall model R2: 0.67 for 
linear regression and 0.72 for GAM, Table 5.26).  Our results also showed that 
meteorological factors such as wet bulb temperature had a moderate influence on 
BC, illustrating that both were simultaneously affected by traffic and meteorological 
factors.  

Wind speed and direction was weakly correlated with the air pollutant concentrations. 
Wind speed always showed a negative correlation with air pollutant concentrations 
and was an effective predictor. The combination of wind speed and wind direction as 
a categorical variable (20 categories) did not improve the prediction.  This is likely 
because we relied on hourly wind data from distant monitoring stations rather than 
real-time wind data nearby the sampling locations. 

Stable atmosphere is more favorable to higher concentrations of air pollutants than 
unstable atmosphere.  Our student t and Wilcoxon statistics tests also showed that 
the difference in concentrations of PAH, PNC, PM2.5 and NOX between stable 
atmospheres and unstable atmospheres is statistically significant (Table 5.11).  
However, in our final models we did not include stability due to lack of statistical 
significance in the predictive model.  This may be due to the inaccuracy of the 
stability data (e.g. modeled data with large uncertainty, every 3 hour and 40 km by 
40 km resolution).  The other possible reason is that the stability data may correlate 
with time of day that did remain in the model, e.g. early morning more stable and mid 
afternoon less stable.  However, the variance inflation factor (VIF) for stability and 
time of day in the model was not high (1.19 for PAH, 1.4 for PNC, 2.02 for PM2.5, 
1.24 for NOX, 1.37 for BC).    

5.7.6.6 Linear vs. non-linear models  

GAM can incorporate both linear and non-linear relationships as well as factor 
variables in the model.  If the scatter plot presented a clear non-linear relationship, 
we used the smooth function of GAM to fit such a non-linear relationship (illustrated 
in Figure 5.13-5.17 for temperature’s relationship with air pollutant concentrations).  
Using GAM, we were able to model the complex non-linear relationships while 
keeping the linear predictive and categorical variables as factors in the model.  In our 
final prediction model, although linear regression and GAM did not use the same set 
of variables and thus could not be compared directly, GAM still provided a better 
prediction accuracy than linear regression (R2: GAM’s 0.52 vs. LM’s 0.43 for PAH in 
Table 5.16; GAM’s 0.63 vs. LM’s 0.48 for PNC in Table 5.21; GAM’s 0.73 vs. LM’s 
0.68 for PM2.5 in Table 5.26; GAM’s 0.50 vs. LM’s 0.40 for NOX in Table 5.31; GAM’s 
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0.43 vs. LM’s 0.37 for BC in Table 5.36).  Generally GAM could improve the 
prediction over linear regression by approximately 5% to 10%.  Even though linear 
regression in R also incorporates factor variables and the same variables without 
consideration of statistical significance, GAM achieved somewhat better predictive 
accuracy.  In order to avoid overfitting in GAM, we needed to first use scatter plots to 
detect possible non-linear relationships.  For a more complex non-linear relationship, 
we set a higher degree of freedom to simulate the practical relationship.  Thus, a 
more precise linear or non-linear relationship can be established in GAM and the 
overfitting can be minimized.   

5.7.6.7 Validation of predictive models     

We conducted 3x3-fold cross validation and holdout independent tests (Tables 5.14, 
5.19, 5.24, 5.29 and 5.34) for linear regression and GAM.  For linear regression with 
inclusion of temporal autocorrelation, the independent holdout test was done (¾ data 
used for training and ¼ data for test).  Table 5.39 shows the shrinkage on 3x3 cross 
validation.  This table shows that the difference in R2 is less than 0.1, demonstrating 
that the model was valid and all of the observations for PAH, PNC, PM2.5, NOX and 
BC can be used to estimate regression coefficients for the final prediction equations.     

5.7.6.8 Consideration of temporal autocorrelation      

We explored temporal autocorrelation using autoregression for the continuous time 
data of PAH, PNC, PM2.5, NOX and BC (Table 5.37 and Figure 5.21). The results 
show that, as expected, there was significant temporal autocorrelation of residuals.  
The improvement of models with adjustment of temporal autocorrelation (AR1) was 
considerable for all air pollutants.  In our independent holdout tests (using ¾ data for 
training and ¼ data for test, Table 5.38), R2 improved by about 28.3% from 0.46 to 
0.59 for PAH, by about 42.5% from 0.47 to 0.67 for PNC, by about 9.0% from 0.72 to 
0.73 for PM2.5, by about 36.4% from 0.34 to 0.60 for NOX, and by about 46.2% from 
0.39 to 0.57 for BC.     

With inclusion of an AR1 parameter, the improvement in the predictions from linear 
regression was great for PAH, PNC, NOX or BC, ranging from 28.3% to 46.2%. 
However, the application of the time-series model may be limited in epidemiological 
studies since we need to know the concentration of the last one or few minutes to 
predict the current concentration and such information is usually difficult to acquire.   
In practical applications, we may use the average of concentration over more 
minutes to construct the regression model to decrease the influence of temporal 
autocorrelation on the model.  For our study, the measured values were limited, and 
averaging over five minutes resulted in fewer samples and consequently models with 
lower R2.  This might also be due to more variance of roadways and meteorological 
factors within the interval of five minutes since the measurement was done mainly on 
freeways.  After a series of tests, we finally chose one minute as the averaging 
interval to generate the samples.  For our regression models, averaging over one 
minute generated more samples, decreased the variance of predictor variables 
within the one-minute interval and had a good predictive performance in comparison 
with averaging over five minutes.  With incorporation of one-minute temporal 
autocorrelation, the prediction was further improved.     
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5.8 SUMMARY AND CONCLUSIONS 
In this section, we have examined the influence of a variety of explanatory variables, 
continuous or categorical, including traffic variables, meteorological factors and time 
of day, modeling methods and temporal autocorrelation upon the prediction of the 
on-road concentration of five pollutants, i.e. PAH, PNC, PM2.5, NOX, and BC.  Final 
prediction models showed the variance explained ranged from 37% to 73% 
depending on the pollutant and modeling method (linear or nonlinear).  The missing 
data did not clearly impact the accuracy of the models for different air pollutants, 
since the variance explained was not greater for NOx, with the least missing data, 
compared with pollutants with the most missing data (PNC, PM2.5 and BC).  
Nevertheless, considerably more data on a larger number of roadway types could be 
have improved the models. 

Our study found that on-road concentrations of any of the five pollutants usually 
peaked in the morning, gradually lowered in the noontime and afternoon hours, and 
returned to a moderate value at night.  The time of a day was one of the most 
important influential factors for the prediction of the five pollutants, explaining a 
considerable part (5.2%-30.3%) of the total variance.  Traffic-related factors such as 
roadway type, AADT or VMT_AADT, lanes and freeways had a moderate and 
significant influence on prediction of the traffic-derived pollutants (i.e. PAH, PNC, 
NOX and BC), but not for PM2.5, which was much more affected by meteorological 
factors such as wet bulb, dew point and ambient temperature.  

In terms of modeling methods, linear regression and non-linear regression (GAM) 
had different predictive performance.  Given the non-linear relationship between 
partial explanatory variables and the target variable of air pollutant concentration 
demonstrated in the scatter plots, GAM is preferred to linear model.  After being 
trained, GAM can also be used to make predictions of future data.  

Using the time series of one-minute averages of measured concentrations over 
multiple dates, we examined temporal autocorrelation of residuals and incorporated 
it in the final prediction.  Statistically significant temporal autocorrelation was clearly 
observed (Table 5.37 and Figure 5.21) and adjustment of such residual 
autocorrelation improve prediction considerably for PAH, PNC, NOX and BC (Table 
5.38).  Although this improved the predictions, such methods may be impractical in 
epidemiological studies since it is difficult to obtain minute-by-minute measured 
values.  

For validation, we used 3x3 cross validation or/and independent holdout tests for the 
different models.  For linear regression and GAM without consideration of temporal 
autocorrelation, we used cross validation and holdout test. The results showed that 
the difference between cross validation and holdout test was small (<0.1) and our 
predictive model was valid for the prediction of other data.  For linear regression with 
incorporation of temporal autocorrelation, the independent holdout test (¾ data for 
training and ¼ data for the test) showed that the temporal autocorrelation contributed 
to the improvement in prediction.   
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6. CHAPTER SIX. TASK 5:  VALIDATE THE IN-VEHICLE EXPOSURE MODEL 
FOR PAH AGAINST MEASUREMENTS FROM REPRESENTATIVE SUBJECTS.  
 
6.1.  MATERIALS AND METHODS  
Overview:  Data from a group of human subjects who carried personal PAH 
samplers were used as a first test of the predictive ability of variables identified from 
the models developed in Task 4.  These data are from a study of working subjects in 
real world driving conditions and the data are collected after one week of sampling 
that was unattended by research technicians (NIH, NIEHS R21 ES016379, Wu).  It 
serves as pilot study to determine the approach needed to validate the models 
developed in Tasks 1-4 for use in human subjects.   
 
The vehicles that subjects usually used are listed in Table 6.1. 
 
Table 6.1. Subject Vehicles. 
Year          Make            Model 
1994          Nissan           Altima 
2007          Honda            Accord 
1999          Chevrolet       Camero 
2000          Nissan           Maxima 
2007          Ford               Edge 
2001          Honda            Accord EX 
2001          Mercedes       430E 
2002          Chevy            Tahoe 
2007          Toyota           Camry 
2003          Honda           CRV 
2009          Honda           Civic 
2005          Mazda           3 
2000          Dodge           Avenger 
1999          Mercury         Sable 
2001          Toyota           4Runner 
2004          Volkswagon   Jetta 
2003          Nissan           Altima 
2006          Lexus            IS 250 
2002          Daewoo        Leganza 
2004          Saturn           Ion 2 
2004          Chevy           Avalanche 
1999          Mitsubishi     Diamente 
1999          Mercury        Mystique 
1999          Mitsubishi     Galant 
2006          Toyota          Prius 
2008          Jeep             Cherokee 
unknown    VW               Jetta 
 unknown   Mitsubishi     Eclipse 
1998          Lexus            ES 300 
2009          Ford              Focus 
 

Subjects:  We acquired personal particle-bound PAH data (EcoChem PAS) for 25 
women.  Subjects were part of an NIH-funded pilot study of time-activity and air 
pollution exposure assessment during pregnancy among 90 women using GPS 
(NIEHS R21 ES016379, Wu, with supplemental funding from NICHD National 
Children’s Study LOI3-ENV-4-A #14, Delfino and Wu) (1,2).  The goal was to collect 
up to three weeks of personal GPS and PAH data at different periods (trimesters or 
the postnatal period).  Sixteen subjects had one week of data, 7 subjects had 2 
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weeks of data, and 2 subjects had 3 weeks of data (36 total weekly series).  
Primarily due to equipment malfunction and noncompliance, not all subjects had a 
full 7 days of GPS and PAH data.   In total, there were 175 person-days of personal 
PAH data with concurrent GPS measurements.   
 
The average age of subjects was 28 (± 5 years) ranging from 18-36 years.  Nine 
subjects were Hispanic, 7 white non-Hispanic, 6 Asian, and 3 other race.  24% had 
family incomes < $30,000 per year, 56% were married, 32% had a college diploma 
and 16% had a graduate school diploma.   
 
Analysis 
 
Two types of regression models were used to assess the consistency of the 
methods, autoregressive models and generalized estimating equations (GEE).  
Since analyses involved time series, autoregressive models were tested using the 
SAS Autoreg procedure to estimate the autoregressive parameter(s).   
Autocorrelation in the residuals was investigated using autocorrelation functions and 
partial autocorrelation functions to lag 15 minutes and with the Durbin-Watson 
statistic (3).  We found that controlling for first order autocorrelation (AR1) was 
sufficient to adjust for autocorrelated error terms.  GEE models were tested in the 
SAS Genmod procedure, which additionally allows for an autoregressive within-
subject correlation structure (4). 
 
Two model approaches were used to predict PAH data.  Approach 1 assessed the 
relation of one-minute PAH to time-variant predictor data (one-minute if possible) 
(8785 observations) whereas Approach 2 additionally assessed the relation of one-
minute PAH to each subject’s reported vehicle data (36 weekly exposure 
assessment series as described below).   
 
For Approach 1 we tested regression models to predict the subject’s one-minute 
average in-vehicle PAH exposure.  Predictor data for Approach 1 is largely described 
above in Task 4 including total traffic counts, roadway type (merging to freeways, 
freeways, major arterials, and minor surface streets or local roads), truck route, 
number of roadway lanes, VMT_AADT, time of day, meteorological data, and vehicle 
speed.  Time of day was categorized as morning rush hour: 06:00am -- 09:00am; 
mid morning: 09:00am --12:00pm; noon: 12:00pm -- 02:00pm; afternoon: 02:00pm -- 
05:00pm; evening rush hour: 05:00pm -- 07:00pm; and all other times: 07:01pm -- 
early 06:00am.  The time-stamped GPS data were linked with the TeleAtlas roadway 
map to derive roadway data.  Vehicle speed (Km/h) was estimated from GPS data 
as described above.   Meteorological data included stability class, ambient 
temperature, ambient relative humidity and wind speed.  Stability class was from A to 
G with A indicating most unstable and G most stable.  The above data were then 
used to construct regression models based on the one minute data.   
 
For Approach 2 we added largely time-invariant data on vehicle type, mileage, and 
use of vehicle by the subject to assess average recirculation/outside air (RC/OA) 
conditions and fan use.  Based on above results (Table 5.1) we classified vehicles 
into vehicle manufacturer region: Asian, German/other, and the referent category is 
US manufacturers, which had the highest AER.  For missing odometer mileage in 7 
subjects, we replaced the missing data with the US annual average for females of 
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12,000 miles (http://www.fhwa.dot.gov/ohim/onh00/bar8.htm) times the age of the 
car.  Questionnaire data on vehicle type, use of vehicle by the subject to assess 
average recirculation/outside air (RC/OA) conditions and fan use was coded as 
follows. 
 
RC/OA conditions:  We used a fixed ordinal classification at each weekly series 
when the same questionnaire was administered.  The coding from the questionnaire 
is given below.  Basically, we gave each response an equal weight of +1 if exposure 
is expected to increase as a result of increased AER as described in above sections, 
or weight of -1 if exposure is expected to decrease as a result of decreased 
AER.  The questionnaire below shown that if a subject would change one or more of 
their answers for the different weather conditions if they were in traffic, then a single 
positive or negative point would be scored. 
 
Ventilation Fan Setting:  We did the same as above with 8 specific responses.  The 
coding from the questionnaire is given below.   
 
The following questions ask how you typically cool and heat the inside of your car.  
Please check the boxes to indicate the usual way you or the driver cools or heats the 
car you use for your main mode of car transportation (check all that apply down the 
column). 

Please check ALL that apply. 

 When it 
is hot 

outside? 

When it 
is cold 

outside? 

When 
the 

weather 
is mild? 

When I am in busy traffic or on a 
freeway? 
 Same as answers to left for when 
it is hot or cold outside (leave boxes 

below blank) 
 Different than  answers to left for 
when it is hot or cold outside (fill in 

appropriate boxes below)  
Coding for RC/OA 

Recirculation = -1 = -1 = -1 = +1 

Outside air, no 
recirculation 

= +1 = +1 = +1 = -1 

Open windows = +1 = +1 = +1 = -1 

Close window = -1 = -1 = -1 = +1 

Coding for Ventilation Fan Setting 

Lower fan setting = -1 = -1 = -1 = +1 

Higher fan setting = +1 = +1 = +1 = -1 

 
 
 

http://www.fhwa.dot.gov/ohim/onh00/bar8.htm�
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6.2. RESULTS AND DISCUSSION  
 
Univariate Statistics 
One-minute PAH data were positively skewed (skew = 2.06) (Figure 6.1) and were 
normalized using a square root transformation (skew = 0.48).  The untransformed 
PAH mean was 100 ng/m3 (±108), median 67, range 0-1078.  The subject weekly 
session average PAH data was normally distributed (Figure 6.2).  The PAH mean 
was 102 ng/m3 (± 53), median 88, range 14-240. 
 

  
Figure 6.1. Box plot for 1-minute average PAH 
concentrations (N=8785 in 25 subjects). 

Figure 6.2. Box plot for series average PAH 
concentrations (N=36 weekly series in 25 subjects). 

 
Of the 8785 one-minute PAH measurements, subjects were on freeways or major 
highways for 1733 minutes (19.24%), on a freeway or highway ramp for 536 minutes 
(5.95%), on a major surface street for 3321 minutes (36.87%) and on a minor 
surface street for 3417 minutes (37.94%).  This is distinctly different than proportion 
of time on various routes used for Tasks 1-4 where a majority of data was collected 
on freeways.  The average speed was 42 ± 36 km/hr. 
 
Regression Models  
 
Table 6.2 shows results of the full model for Approach 1 including all variables and 
both the GEE model and the autoregressive model (both fit with an AR1 parameter).  
Results were similar for the two modeling approaches. In autoregression models, 
stability class, VMT for  1000 m buffers, number of roadway lanes, wind speed, 
ambient temperature and truck route were not significantly associated with in-vehicle 
PAH.  This also included VMT 500m (p < 0.35, not shown).  These results were the 
same in the GEE models except for wind speed, which was inversely associated with 
PAH.  Significantly higher predicted PAH was observed during the early morning and 
late afternoon to early evening rush hours.   A linear increase in exposure with 
vehicle speed was observed relative to slow speeds (< 5  Km/h).  An autoregression 
model estimate for continuous speed alone was 0.0141 ng/m3 per 1.0 increase in 
Km/h.  Roadway type was significantly associated with PAH with higher PAH for 
larger highways compared with the referent category of minor surface streets. 
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The overall R2 for the ordinary least squares (OLS) model was small (0.10) whereas 
for the autoregressive model the R2 increased to 0.51, but the R2 due to regression 
dropped to 0.02. This suggests that autocorrelation explained most of the variance.  
A regression of predicted versus observed PAH from the full GEE model in Table 
6.2, adjusted for autocorrelation, revealed an R2 of 0.10.    
 
We then added the individual-level fixed predictors to the regression analysis of one-
minute data (Approach 2).  As discussed, the fixed predictors were those related to 
vehicle characteristics and questionnaire-reported typical use of vehicle ventilation 
(RC/OA) and fan.  We found that none of these variables were significantly 
associated with PAH in GEE models (Table 6.3).  However, in autoregressive 
models we found that a higher score for the RC/OA variables (indicating increased 
AER) was significantly positively associated with PAH as expected.  The adjusted R2 
for the OLS models was 0.12 whereas for the autoregressive models the regression 
R2 was 0.03 and total R2 was 0.51, which is nominally better than the model without 
the time invariant predictors described above (Table 6.2).  Furthermore, in 
autoregressive models we found that vehicle type was significantly associated with 
PAH in the expected direction with lower exposures in German and Asian vehicles 
than in US vehicles, which is again consistent with the results in the above tasks.  
Odometer mileage was also significant in autoregressive models, however, not in the 
expected direction since higher mileage was associated with lower PAH. 
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Table 6.2.  Multivariate regression models for the prediction of particulate PAH: continuously 
measured or estimated predictors 

 GEE Model  Autoregression Model 

Parameter Regression 
Coefficient 

Standard 
Error 

Z 
value 

p-
value  Regression 

Coefficient 
Standard 

Error 
T 

value p-value 

Intercept 6.8432 2.8123 2.43 0.0150  7.1521 1.0220 7.00 <.0001 

Time of Day:a          

    6:00-9:00 1.8075 0.6532 2.77 0.0057  1.7826 0.3303 5.40 <.0001 

    9:00-12:00 1.0002 0.7380 1.36 0.1753  0.9801 0.3853 2.54 0.0110 

   12:00-14:00 0.8913 0.6307 1.41 0.1576  0.8538 0.4041 2.11 0.0346 

   14:00-17:00 1.4719 0.4977 2.96 0.0031  1.5117 0.3484 4.34 <.0001 

   17:00-19:00 1.6616 0.4896 3.39 0.0007  1.6626 0.3728 4.46 <.0001 

Speed 5-15 Km/h 0.4438 0.2153 2.06 0.0393  0.5268 0.1386 3.80 0.0001 

Speed ≥15 Km/h 0.9266 0.2546 3.64 0.0003  1.0484 0.1243 8.43 <.0001 

Stability E,F,Ga -0.0306 0.3267 -0.09 0.9253  -0.0541 0.2268 -0.24 0.8115 

VMT 1000m 0.0033 0.0026 1.27 0.2058  0.0039 0.0026 1.50 0.1331 

No. of Lanes -0.0233 0.0480 -0.49 0.6266  -0.0182 0.0348 -0.52 0.6012 

Wind Speed (m/s) -0.4484 0.3299 -1.36 0.1741  -0.4947 0.1260 -3.93 <.0001 

Roadway Type:a          

   Major Street 0.3392 0.1165 2.91 0.0036  0.3633 0.1114 3.26 0.0011 

   Freeway Ramp 0.4289 0.1608 2.67 0.0077  0.4690 0.1861 2.52 0.0118 

   Freeway/Major 
   Highway 

0.5483 0.1388 3.95 <.0001  0.5705 0.1619 3.52 0.0004 

Amb. Temp (°C) 0.0349 0.1051 0.33 0.7400  0.0200 0.0338 0.59 0.5539 

Truck Route (Y/N) 0.1138 0.3310 0.34 0.7310  0.1378 0.2344 0.59 0.5567 
a Referent categories were: Time of Day, 19:00 – 6:00; Stability, A-D; Roadway Type, 
minor surface streets. 
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Table 6.3.  Multivariate regression models for the prediction of particulate PAH: continuously 
measured or estimated predictors plus time-invariant subject-reported vehicle 
characteristics. 

 GEE Model  Autoregression Model 

Parameter Regression 
Coefficient 

Standard 
Error 

Z 
value 

p-
value  Regression 

Coefficient 
Standard 

Error 
t 

value 
p-

value 

Intercept 7.9428 2.7245 2.92 0.0036  8.1933 1.1107 7.38 <.0001 

Time of Day:a          

    6:00-9:00 1.9688 0.6351 3.10 0.0019  1.9640 0.3300 5.95 <.0001 

    9:00-12:00 1.1556 0.7310 1.58 0.1139  1.1544 0.3850 3.00 0.0027 

   12:00-14:00 0.9900 0.5893 1.68 0.0929  0.9693 0.4048 2.39 0.0167 

   14:00-17:00 1.6218 0.4320 3.75 0.0002  1.6749 0.3509 4.77 <.0001 

   17:00-19:00 1.9108 0.4777 4.00 <.0001  1.9551 0.3736 5.23 <.0001 

Speed 5-15 Km/h 0.4382 0.2150 2.04 0.0415  0.5180 0.1386 3.74 0.0002 

Speed ≥15 Km/h 0.9178 0.2528 3.63 0.0003  1.0308 0.1244 8.29 <.0001 

Stability E,F,Ga 0.0528 0.3061 0.17 0.8631  0.0438 0.2295 0.19 0.8485 

VMT 1000m 0.0036 0.0024 1.51 0.1315  0.004379 0.002600 1.68 0.0922 

No. of Lanes -0.0177 0.0454 -0.39 0.6959  -0.0119 0.0348 -0.34 0.7327 

Wind Speed (m/s) -0.5329 0.3352 -1.59 0.1119  -0.5773 0.1321 -4.37 <.0001 

Roadway Type:a          

   Major Street 0.3422 0.1155 2.96 0.0031  0.3650 0.1115 3.27 0.0011 

   Freeway Ramp 0.4105 0.1667 2.46 0.0138  0.4424 0.1861 2.38 0.0174 

   Freeway/Major 
   Highway 

0.5174 0.1465 3.53 0.0004  0.5285 0.1618 3.27 0.0011 

Amb. Temp (°C) 0.0513 0.1106 0.46 0.6429  0.0375 0.0362 1.04 0.3001 

Truck Route (Y/N) 0.0764 0.3266 0.23 0.8149  0.0929 0.2344 0.40 0.6918 

RC_OA score 0.3240 0.3073 1.05 0.2917  0.3102 0.0985 3.15 0.0016 

Fan Use score 0.1680 0.3666 0.46 0.6468  0.1619 0.1289 1.26 0.2092 

Vehicle typea          

   Asian -1.2051 1.0098 -1.19 0.2327  -1.2306 0.2595 -4.74 <.0001 
   German -1.4601 1.5316 -0.95 0.3404  -1.4390 0.5684 -2.53 0.0114 
Odometer (miles) -0.0027 0.0016 -1.64 0.1012  -0.002534 0.001189 -2.13 0.0331 

a Referent categories were: Time of Day, 19:00 – 6:00; Stability, A-D; Roadway Type, 
minor surface streets;  Vehicle type, U.S. manufacturers. 
 

6.3  SUMMARY AND CONCLUSIONS  
 
In Task 5, using data from 25 subjects during one to several weeks of exposure 
assessment, we examined the predictive ability of model variables also tested in the 
other tasks.  Only PM PAH was tested for subjects mainly due to the instrument 
portability and the importance of PAH as markers of traffic emissions.  Future work 
with separate funding is envisioned to test the other modeled pollutants in similar 
epidemiologic settings.  
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For the one-minute models to predict personal in-vehicle PM PAH, although many 
predictors were significant and in the direction anticipated, the overall predictive 
power of the PAH models was low (only 12% for OLS models) compared to the 
models from the technician-administered in-vehicle testing for Tasks 1-4 (37% to 
73% depending on the pollutant and model).  This is likely due to the fact that the on-
road and in-vehicle measurements for Tasks 1-4 were done by field technicians and 
much of the predictive data were collected in real time by staff who planned and well-
documented all travel routes and procedures.  In addition, most of the data for Tasks 
1-4 were collected on freeways, with higher and perhaps more predictable emission 
sources.  In contrast, for Task 5 subjects were relied upon to carry the personal 
samplers and in-vehicle exposure times were extracted using GPS data from the 
total personal exposure dataset.  Other predictors such as vehicle characteristics, 
the use of RC/OA and fans were not scripted as in Tasks 1-4 but were derived from 
baseline questionnaires collected before each of a subject’s weekly exposure series.   
 
Also, we did not specifically collect in-vehicle exposure data only.  Although our time-
activity model performed reasonably well in identifying in-vehicle travel points based 
on personal GPS data (approximately 88% sensitivity, 99% specificity, and 86 % 
precision) (1), there were still misclassified in-vehicle travel points, especially for 
points with a relatively low speed.  To reduce the impact of misclassified in-vehicle 
travel points, we visually checked and removed apparently erroneous points (e.g. 
scattered low-speed points that lasted for at least 10 minutes) before the modeling.  
Furthermore, the women may or may not have used the vehicle she usually drove 
during the sampling week, especially if families have more than one vehicle at home 
or if she carpooled with others.  In addition, their actual driving patterns during the 
sampling week may also be different from answers in the baseline questionnaire 
data.   
 
In Task 4, we developed and validated multiple models for in-vehicle PN (Part 1) and 
on-road BC, UFP number, PM2.5, particle-bounded PAH, and NOx (Part 2). Fitted 
models for each species were validated against measurement data collected in 
Tasks 1 and 2 using validation methods.  The extensive model validations provided 
us with useful and rich information on model performances in predicting in-cabin 
concentrations of the selected pollutants under normal driving conditions in our study 
region.  Predictions were strong in general. 
 
However, our ultimate goal is to use the validated models to estimate in-vehicle 
exposure for a large number of subjects in epidemiological studies where personal 
exposure measurements are not feasible.  The limited sample of Task 5 using only 
PM PAH in 25 subjects was informative, but exposure predictions were less than 
desired due to data limitations, which can be improved in future epidemiological 
studies.  For example, we could monitor only in-vehicle exposures.  We also could 
obtain vehicle and driving pattern information after or during the one-week of 
sampling, which would be more accurate than the information we obtained before 
the sampling in the present study.   
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7.  CHAPTER 7. STUDY LIMITATIONS 
 
The model predictions (for AER and I/O ratios) may be less accurate for vehicles 
older than 15 years and at speeds exceeding 60 miles h-1 due to limited coverage of 
measured data for such conditions. Moreover, during real world driving, speeds are 
often unsteady and vary mainly due to differences in roadway type (unrestricted 
access freeways versus restricted access arterial roads) and traffic intensity (free 
flowing during off-peak hours versus congested during peak traffic hours). I/O ratios 
are dependent on and positively correlated with vehicle speed and this relation is 
stronger under recirculation (RC) ventilation setting than outside air intake condition 
(OA).  Therefore, variable speed during trips results in a distribution of I/O ratios for 
the trip (which follow from the unsteady and varying AER), and will reflect the 
variation in speed if ventilation conditions are unchanged during the trip. (Predictive 
models presented in Chapter 5 quantify the effect of speed on AER and I/O ratios.) 

To investigate the influence of unsteady speeds on I/O ratios during real world 
driving, I/O ratio distributions were calculated for typical speed frequency distribution 
during peak (4-5 PM) and off-peak traffic hours (4-5 AM) for both roadway types – 
freeways and arterial roads. The probability distributions for speed are plotted in 
Figure 7.1 below and are the same as input distributions in the EPA Motor Vehicle 
Emission Simulator (MOVES), with 16 speed bins covering a 0-75 miles h-1 range 
(http://www.epa.gov/otaq/models/moves/tools/averagespeedconverter_mobile6.xls). 
The hours plotted had the highest contrast. The weighted average speeds were 27 
and 30 miles h-1, respectively, for arterial roads during peak and off-peak traffic 
hours, and 27 and 52 miles h-1, respectively, for freeways.  

The resulting I/O ratio distributions are plotted in Figure 7.1 for a vehicle of median 
age (7 years for U.S. fleet, EPA 2010) operating at medium fan speed (fan strength = 
0.5). The difference in average I/O ratio (frequency weighed) between peak and off-
peak hours was less than 0.05 on arterial roadways, under both RC and OA 
ventilation modes. This difference was up to or less than 0.15 for freeways. Greater 
difference in peak and off-peak traffic speed distribution on freeways results in 
greater difference in I/O ratios. Generally, higher speeds during off-peak traffic hours 
resulted in higher I/O ratios. However, this does not imply higher resultant in-cabin 
concentrations. Higher pollutant concentration during peak traffic hours may more 
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than compensate for lower I/O ratios. In absolute terms, the difference in I/O ratios 
during peak and off-peak hours was greater for older vehicles, higher fan settings 
and under OA ventilation condition. However, in terms of percentage change in I/O 
ratio, the trend was reversed. The most significant change in I/O ratios was observed 
under RC ventilation mode for new vehicles operation at low fan settings.  

 
Figure 7.1: I/O ratio distribution in a median aged vehicle operating at medium fan 
setting corresponding to typical distribution of driving speed on urban freeways and 
arterial roads during peak (4-5 AM) and off-peak (4-5 PM) traffic conditions. 

 

I/O ratio for the same vehicle (ventilation settings being constant) will be higher if 
vehicle is driven on freeways in comparison to that on arterial roads because of 
higher driving speeds. This effect of roadway type/increased speed is greater under 
recirculation setting than outside air setting, which follows from the stronger 
dependence and positive correlation of I/O ratios under RC mode on vehicle speed. 
Any other pattern, for example, the disparity between freeway and arterial I/O ratios 
being higher for newer cars compared to older cars, was not significant. The effect of 
difference in roadway type on I/O ratios seemed homogeneous for vehicles up to 15 
years old and full range of fan settings under a ventilation mode for a speed 
distribution. 

Furthermore, the difference between average I/O on freeways and arterial roads 
during peak traffic hour was negligible due to little to no difference in speed 
distribution on these two roadways during rush hours, about 0.01. However, during 
off-peak traffic hours the difference was significant, about 0.07-0.08. This has 
important implications for exposure assessment. During commute hours, which 
generally correspond to peak traffic hours, the aspect of roadway type that is of 
greater consequence and will drive the exposure concentration variability is the 
difference in pollutant concentration and not the travel speed associated with 
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different roadway types. However, during off-peak hours, the differences in travel 
speed on different roadway types will significantly contribute to the variability in 
exposure concentrations.  

We conducted an extensive exposure measurement and modeling study. However, it 
was not feasible in the proposed work to cover all possible exposure conditions in 
vehicles. We consider this the main limitation of the study. For instance, we were not 
able to assess every day of the week (Mon vs. Friday) or every season and climatic 
condition.  Model predictive power thus varied by species investigated (e.g., PN vs. 
PAH vs. BC). The different measurements were also not always highly correlated 
and so the different predicted concentrations may have varying associations with 
health outcomes in future epidemiologic analyses. This is anticipated based on the 
degree to which each measurement represents underlying toxicity or is subject to 
exposure error in the model predictions. We cannot predict that at this time.  Finally, 
the limited sample of Task 5 using only PM PAH in 25 subjects was informative, but 
exposure predictions were less than desired due to data limitations, which can be 
improved in future epidemiological studies that test the models produced in this 
study.   
 
 

8.  CHAPTER 8. OVERALL SUMMARY AND CONCLUSIONS 
For traffic-related pollutants (like ultrafine particles Dp < 100 nm), a significant 
fraction of overall exposure occurs within or close to the transit microenvironment 
because on-road concentrations of traffic-related pollutants are typically much higher 
than concentrations measured at ambient monitoring stations. Therefore, 
understanding exposure to these pollutants in such microenvironments is crucial to 
accurately assessing overall exposure. However, correct assignment of in-vehicle 
exposures requires a parameter the inside-to-outside ratio (I/O), which can be used 
to accurately modify roadway concentrations to reflect the combined effects of 
multiple mechanisms that either limit the pollutant penetration inside vehicles or 
cause in-cabin losses.  For a given vehicle, the I/O ratio depends on parameters like 
ventilation setting preferences and driving speed that influence air exchange rate 
(AER).  Air exchange rate (AER) is the dominant factor in affecting how close in-
vehicle concentrations of traffic-related particulate pollutants come to equal on-road 
concentrations.  Furthermore, the inter-vehicle differences in I/O (and AER), due to 
aging and make/manufacturer type, themselves are just as significant. As a result, 
I/O ratios can vary from nearly zero to one both within a singular vehicle (depending 
on ventilation mode and driving speed) and within a fleet.  Despite this importance of 
AER in affecting in-vehicle particle exposures, few studies have characterized AER 
and all have tested a small number of cars.   
 
We developed a simplified yet accurate method for determining AER using the 
occupants’ own production of CO2 (Task 1).  By measuring initial CO2 build-up rates 
and equilibrium values of CO2 at fixed speeds, AER was calculated for 59 vehicles 
representative of California’s fleet, thus producing the first accurate and 
representative characterization of vehicle AERs.  AER measurements correlated and 
agreed well with the largest other study conducted (R2 = 0.83).  Multivariate models 
captured 70% of the variability in observed AER using only vehicle age, mileage, 
manufacturer and speed, all easily ascertainable information suitable for studies with 
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large numbers of subjects.  We found that AER increases strongly with increasing 
vehicle age and mileage and increasing speed, and AER is high if windows are open 
or outside air ventilation settings are chosen.  We suspect that vehicle age is acting 
as a surrogate for aging and failing seals and other factors allowing progressively 
greater AER as well as newer technology that may contribute to increased vehicle 
tightness and thus lower AER and lower in-cabin particle concentrations. 
 
In-vehicle concentrations result from the interaction of on-road concentrations with 
vehicle characteristics that can reduce or remove the pollutants, depending on the 
pollutant and the vehicle AER.  A sufficiently high AER results in in-vehicle 
concentrations equaling on-road particle mass and number concentrations while low 
AER tends to reduce particle mass and number concentrations.   The actual 
pollutant removal rates are due to a complicated interplay between a vehicle’s 
physical characteristics, ventilation condition, particle size, and changes in AER.  To 
address this interplay, we made determinations of losses using on-road testing under 
realistic aerodynamic conditions (Task 2).  We focused on ultrafine particle number 
concentrations, the particle pollutant with the highest and most widely-varying loss 
rates.  Six vehicles were tested at different driving speeds, fan settings, cabin filter 
loadings, and ventilation conditions (outside air or recirculation).  During outside air 
conditions, the fraction of particles removed averaged 0.33 ± 0.10 (SD).  The fraction 
removed did not vary with vehicle speed but decreased at the higher ventilation flow 
rates of higher fan settings.  During recirculation conditions, AER was much lower 
and removal fraction higher.  Removal fraction averaged 0.83 ± 0.13 and was highly 
correlated with and was a strong function of AER.  Under both ventilation condition 
types, particle removal was primarily due to losses unrelated to filtration.  Filter 
condition, or even the presence of a filter, played a minor role in particle fraction 
removed.  Based on these results, predictive models for in-vehicle ultrafine particle 
number concentration were developed, as described below. 
 
To characterize on-road concentrations for Tasks 4-5 below, extensive on-road 
measurements were made in Tasks 1-2 on two arterial and three freeway routes 
covering 39 to 57 and 77 to 86 miles, respectively.  Measurements of real-time black 
carbon, UFP, PM2.5, NO, NO2, CO, CO2, and particle-bound PAH were made, with 
GPS and video to capture time, location, and surrounding traffic conditions.   
 
For Task 3, fuel-based emission factors (EF) were calculated based on simultaneous 
on-road pollutant and CO2 measurements (Task 3).  Partitioned EFs were used to 
calculate freeway emission rates (ER).  EFs for light-duty vehicles (LDV) were 
generally in agreement with the most recent studies but lower for heavy-duty 
vehicles (HDV), and significantly lower only for oxides of nitrogen (NOx), probably 
resulting from the newer NOX emission standards for trucks operating at the ports in 
LA.  Annually on I-710, a major truck route, 6.5% fraction of total vehicle miles 
travelled (VMT) is associated with HDV, but HDV were estimated to contribute 69% 
to total NOx emissions.  These differences in EFs by freeway segment and traffic mix 
were incorporated into our on-road concentration prediction models discussed 
below.  
 
For Task 4, we first developed models for predicting in-cabin UFP concentrations if 
roadway concentrations are known, taking into account vehicle characteristics, 
ventilation settings, driving conditions and air exchange rates (AER). Particle 
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concentrations and AER were measured in 43 and 73 vehicles, respectively, under 
various ventilation settings and driving speeds.  Multiple linear regression (MLR) and 
generalized estimating equation (GEE) regression models were used to identify and 
quantify the factors that determine inside-to-outside (I/O) ratios and AERs across a 
full range of vehicle types and ages.  AER was the most significant determinant of 
UFP I/O ratios, as I/O was most strongly influenced by ventilation setting (decreased 
with recirculation vs. increased with outside air intake).  Additional inclusion of 
ventilation fan speed, vehicle age or mileage, and driving speed explained greater 
than 80% of the variability in measured UFP I/O ratios across a representative 
sample of the California fleet and across the expected range of normal driving 
conditions.  The I/O ratios measured under RC conditions were far lower than those 
under OA conditions due to lower AERs under RC. The median I/O ratio value at RC 
was 0.11 (inter-quartile range: 0.07-0.22) compared to 0.66 at OA (inter-quartile 
range: 0.53-0.80). The median AER value at RC was 6.0 h-1 (inter quartile range: 
3.6-10 h-1) compared to 63 h-1 for OA (inter quartile range: 47-83 h-1).  
 
We also developed and validated predictive models for on-road concentrations of 
particle-bound PAH, UFP, PM2.5, NOX and BC (Task 4) that can be combined with 
subject information on vehicle use and our predictive models for AER to evaluate 
exposure to in-vehicle pollutants.  The on-road measured data were one-minute 
averaged and compiled with traffic variables (traffic volume, roadway type, number of 
lanes), on-road or ambient meteorological factors (dew point, wet bulb, relative 
humility, ambient temperature, atmospheric stability) and time of day to develop 
linear regression models and non-linear generalized additive models.  We found that 
time of day was a statistically significant predictor of the six pollutants, accounting for 
a considerable part of the variance explained (5.2%-30.3%). Traffic variables such 
as VMT_AADT, roadway type, and number of lanes were significant for the traffic-
derived pollutants but not PM2.5.  PM2.5 is a regional pollutant and meteorological 
factors were stronger predictors than the traffic variables. Final prediction models 
showed the variance explained ranged from 37% to 73% depending on the pollutant 
and modeling method (linear or nonlinear).  Adjustment for temporal autocorrelation 
of residuals led to a modest improvement in prediction.  Models were shown to be 
valid using 3x3 cross validation and independent holdout validation.     
 
We examined the predictive ability of model variables tested in above tasks for 
human subjects using personal particle-bound PAH exposure for 25 subjects during 
their time in the in-vehicle environment (derived from personal GPS data).  Although 
many predictors from Task 4 were significant and in the direction anticipated, the 
overall predictive power of models for our human subjects data was low (R2 around 
0.1) compared to the models from the technician-administered testing for Tasks 1-4.  
Perhaps the most important factors that limited our predictive power were that the 
time on freeways was limited (unlike work in Tasks 1-4) and predictors such as 
ventilation conditions that determine AER were not scripted but were derived from 
baseline questionnaires on general preferences collected before each of a subject’s 
weekly exposure series.  Because our studies demonstrated the overwhelming 
importance of AER on in-vehicle exposure, our limited ability to predict our human 
subject exposures indicates the importance of accurately characterizing AER and 
ventilation setting preference.  Our baseline questionnaires were not designed to do 
this, although this would be easily remedied in future work.  The limited sample size 
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of Task 5 using only PM PAH in 25 subjects was informative, but exposure 
predictions were less than desired due to these data limitations.  
 
 
Exportability of the Findings: 
Most of the previous in-vehicle exposure studies conducted in California (1-3) are 
characterization studies, which provide helpful information on in-cabin concentrations 
under various conditions but are difficult to quantitatively apply to other exposure and 
epidemiological studies. One of our major goals and the strength in this study is to 
generalize the measurement data to a larger population by developing models based 
on information of vehicle (age and type), roadway (type), traffic activity (total and 
diesel traffic count), emissions, driving pattern (AC use, window position),  
meteorology (mixing height, temperature, relative humidity), seasonality, and time of 
day. These models will provide helpful information to other researchers on the 
impact potency of various parameters. They can also be adapted and applied to 
other regions after validation using local measurement data.  
 
To this end, prediction of particle exposure inside vehicles requires determining 
ventilation setting first and foremost (i.e., OA or RC), due to its large impact on AER. 
Under OA conditions, fan setting is the most dominant variable, and I/O ratio was 
approximately 0.6 and fairly independent of speed. Under RC conditions, I/O ratio 
has a large range and varies from 0.5 to zero, depending on AER, which can be 
predicted by speed and vehicle age. Under open window conditions, I/O ratios 
approach one, i.e., in-cabin concentrations frequently equal roadway concentration.  
Difficult to obtain information, such as the state of in-cabin filter loading, does not 
appear to be a crucial factor in assessing I/O ratios and the resulting in-vehicle 
particle exposures.  It also does not appear that changes in on-road size distribution 
have a large impact on I/O ratios. Therefore, all of the variables needed to estimate 
I/O ratio within 10% or less can be obtained through questionnaires given to vehicle 
owners. 
 
Other studies that have measured UFP I/O ratios include Pui et al. (2008) (4) and Qi 
et al. (2008) (5), who investigated in-cabin air filter efficiency, and found large UFP 
reductions inside two new vehicles under recirculating conditions, but neither AER 
nor speed were reported.  Zhu et al. (2007) (1) also reported large reductions in in-
vehicle UFP concentrations in three cars, but under conditions of variable speeds, 
and AER was variable and only estimated indirectly from concentration change time 
lags.  Therefore, prior to Knibbs et al. (2010) (6), no in-vehicle UFP I/O ratio results 
have been reported in a form that can be generalized.  Using a CPC 3007 (the same 
instrument used by us) Knibbs et al. (2010), reported a high correlation between I/O 
ratio for UFP and AERs (r2 = 0.81).  In the present study, at RC the r2 between I/O 
ratio and AER was 0.80, indicating that AER is the most significant determinant of 
I/O ratio at RC ventilation conditions.  Additional comparisons of our study with the 
results of Knibbs et al. (2010) (6) and others are extensively discussed in Chapters 
2-5.  Other recent studies (Gong et al., 2009; Xu et al., 2009) (7-8) that have 
produced mechanistic models of particle losses inside vehicles relied on parameters 
like particle penetration through cracks and surface deposition rates, which while 
useful, are not obtainable outside of a laboratory setting. 
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However no study until this one has made it possible for a researcher to estimate in-
vehicle AER or UFP I/O ratios instead of having to measure them directly.  A novel 
contribution of this study is the empirical model for predicting AER and UFP I/O 
ratios. The ability to estimate AER and UFP I/O using models from the present work 
makes it possible for exposure scientists or epidemiologists to predict drive-time in-
vehicle UFP exposure based on estimated on-road UFP concentrations and the 
collection of survey data regarding the characteristics of vehicles used by the study 
population.  It bypasses the reliance on time-consuming measurements and 
mechanistic models (such as those described above), which are unfeasible in an 
epidemiologic study, and makes it possible to generate predictions for large cohorts 
based on simple information such as vehicle make, age and ventilation choice.  
 
Furthermore, it must be recognized that we did not develop total personal exposure 
models. Exposures in other microenvironments were not assessed in the study, but 
could be addressed in future epidemiologic research that may use the models 
developed in this study. Given the potentially large impact of in-vehicle exposures, 
the impact of that type of exposure alone on health outcomes should be investigated. 
This is similar to the usual approach of assessing exposure only at the home 
address but ignoring exposure at other locations. Nevertheless, there is great 
potential to incorporate the predicted in-vehicle exposures using the proposed data 
with other microenvironmental exposure data to predict total personal exposure.  
 
We envision that time-activity data (GPS, questionnaire, etc.) will also assist us in 
assessing exposure at other locations, including commuting routes as discussed. It 
is possible that among actual study subjects in an epidemiologic study, travel route 
data will not accurately reflect exposures during all times. For example, a subject 
quits work after the time-activity assessment and this information is not made 
available, or a subject uses mass transit that cannot be assessed using the 
proposed model data. Although this may be a limitation in a cohort or other 
epidemiologic study, we have not proposed to test model accuracy in actual study 
subjects followed over long periods. Nevertheless, the next stage will be to test 
models in a sample of subjects in a cohort study using the available study tools as 
compared with a gold standard (e.g., long-term GPS not otherwise feasible in the 
overall cohort). This type of validation study is well beyond the scope of the present 
study and it would require extensive resources to conduct. We anticipate that such a 
study will be conducted given the supportive data obtained in the present study.  
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9.  CHAPTER 9. RECOMMENDATIONS  
Results of this study can be used to conduct epidemiologic investigations of the 
health effects of in-vehicle exposures to air pollutants, but additional testing of 
exposure models may be needed.  In particular, additional subjects with varying 
commute behaviors would be needed to validate predictive models for the range of 
exposures assessed in this study.  
 
Additional research is needed in consort with health studies so that the relevance of 
this potentially important source of traffic-related air pollution exposure can be 
assessed.  Given the long duration of commuting for the average Californian, 
adverse health impacts could be great and completely unrecognized to date.  
Therefore, it is important at this early stage to make the public aware of the potential 
for high air pollutant exposure while traveling in vehicles and what are the basic 
characteristics of the vehicle and the occupants’ use of the ventilation system that 
most affect this exposure.  The present data combined with previous literature is 
sufficient to provide this information. 
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